Identification of the Linear Sound Sources in Turbulent free Shear Flows:Non-modal Analysis and Direct Numerical Simulation Study
湍流自由剪切流中线性声源的识别:非模态分析和直接数值模拟研究
基本信息
- 批准号:261830592
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The linear process of sound generation by pure vortex mode perturbations embedded in mixing layer and jet flows is the main objective of the proposed research which is based on a theoretical breakthrough in the hydrodynamic stability theory of shear flows in the 1990s. This breakthrough is related to the understanding of phenomena induced by the non-normality of non-uniform flow systems and it enables us to study the linear sound generation processes. Our preliminary results show that the only linear mechanism of wave generation by vortex disturbances is the mode coupling induced by the non-normality of these flow systems. This mechanism is efficient for all Mach numbers and the near field of the generated sound is comparable to the hydrodynamic one: the energy of the linearly generated acoustic waves in shear flows is comparable to the energy of the turbulent eddies. The non-modal approach (Kelvin-mode approach) is the basic theoretical approach in our study and allows us to analyse the basic processes of linear sound generation by vortices embedded in the flows under investigation. It is also known that the sound field reveals an anisotropic nature in the spectral space and the topology of the linear source representation in Lighthill's acoustic analogy and of the presented mechanism of anisotropic linear wave generation are inherently different and principally incompatible with each other. Accordingly, we consider free shear flows to understand the basic physics of the underlying phenomena of sound generation in these flows. Therefore, the main aim of the project is the comprehensive and quantitative investigation of the efficiency of linear phenomena in sound generation. The analysis of the relative roles of linear and nonlinear processes in the generation and propagation of acoustic waves in the free shear flow will also be the focus of this proposal.
基于90年代剪切流水动力稳定性理论的突破,本文研究的主要目标是混合层和射流中嵌入纯涡模扰动的线性发声过程。这一突破涉及到对非均匀流系统非正态现象的理解,使我们能够研究线性发声过程。我们的初步结果表明,涡旋扰动产生波浪的唯一线性机制是由这些流动系统的非正态引起的模式耦合。这种机制对所有的马赫数都是有效的,并且产生的声音的近场与流体动力学的相当:剪切流中线性产生的声波的能量与湍流涡旋的能量相当。非模式方法(开尔文模式方法)是我们研究的基本理论方法,它使我们能够分析嵌入在所研究的流动中的涡旋产生线性声音的基本过程。众所周知,声场在频谱空间中表现出各向异性的性质,莱特希尔声学类比中线性源表示的拓扑结构和所提出的各向异性线性波产生机制的拓扑结构本质上是不同的,并且基本上彼此不兼容。因此,我们考虑自由剪切流,以了解在这些流中声音产生的基本物理现象。因此,该项目的主要目标是全面和定量地研究线性现象在声音产生中的效率。分析线性和非线性过程在自由剪切流中声波的产生和传播中的相对作用也将是本提案的重点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Holger Foysi其他文献
Professor Dr.-Ing. Holger Foysi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Holger Foysi', 18)}}的其他基金
The nature of turbulence in compressible homentropic constant shear flows: its vortex and wave contents and self-sustenance.
可压缩垂直恒定剪切流中湍流的本质:其涡流和波内容以及自维持。
- 批准号:
438287556 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Application of the "Method of Moving Frames" to the magnetohydrodynamic shallow water equations - Conservation Properties and Robustness
“移动框架法”在磁流体动力学浅水方程中的应用——守恒性和鲁棒性
- 批准号:
374462528 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Unsteady optimal control of shear flows based on the discrete and continuous adjoint Navier-Stokes equations.
基于离散和连续伴随纳维-斯托克斯方程的剪切流非定常最优控制。
- 批准号:
235772517 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Kombinierte experimentelle und numerische Analyse der Fluid-Struktur Interaktion und Wandschubspannung in elastischen Gefäßen bei instationärer Durchströmung
非定常流动过程中弹性容器流固相互作用和壁面剪应力的实验与数值联合分析
- 批准号:
203317824 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Turbulente Mischung und Verbrennung in kompressiblen Scherschichten - Simulation und Beeinflussung
可压缩剪切层中的湍流混合和燃烧 - 模拟和操纵
- 批准号:
57812851 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
ColtBig: Compressible and thermal lattice Boltzmann methods on interpolation-based grids
ColtBig:基于插值网格的可压缩和热晶格玻尔兹曼方法
- 批准号:
439383920 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Regulation of Linear Ubiquitin Signaling in Innate Immunity
先天免疫中线性泛素信号传导的调节
- 批准号:
MR/X036944/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Linear Response and Koopman Modes: Prediction and Criticality - LINK
线性响应和库普曼模式:预测和临界性 - LINK
- 批准号:
EP/Y026675/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
- 批准号:
2902122 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship