Unsteady optimal control of shear flows based on the discrete and continuous adjoint Navier-Stokes equations.
基于离散和连续伴随纳维-斯托克斯方程的剪切流非定常最优控制。
基本信息
- 批准号:235772517
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimal flow control based on the continuous adjoint has been very successful so far. Nevertheless, this method shows deficiencies for unsteady flow cases at high Reynolds numbers and when models for the non-represented scales are applied. These deficiencies lead to wrong gradient directions during the determination of the minimum of a cost functional and are caused by inconsistencies of the continuous adjoint of the numerically approximated (primal) flow state. As a consequence, only limited control horizons are possible, additionally, all terms in the flow equations of the primal simulation need to be differentiable, which is certainly not the case for all models. Making use of the discrete adjoint offers the possibility to reach machine precision in determining the gradient numerically, based on the calculated primal flow state. For unsteady turbulent flows at high Reynolds numbers this issue has not been investigated in depth. Although the discrete approach is exact based on the numerical (i.e. discrete primal) flow solution, it still contains the modelling and discretization errors when compared to the `exact` flow solution.The aim of this proposal is to compare the continuous and discrete approach, by minimizing the sound emission to the far-field over very long time horizons for several defined flow cases. The comparison is performed using different resolutions and Reynolds numbers, by making use of DNS and Large Eddy Simulation. The discrete adjoint is developed using automatic differentiation tools (AD-Tools) applied on the same flow solver, which serves as a basis for the continuous adjoint control. The comparison tries to identify strengths and weaknesses of the respective approaches and intends to determine successfull approaches to control turbulent flows at high Reynolds numbers.
到目前为止,基于连续伴随的最优流量控制取得了很大的成功。然而,这种方法在高雷诺数的非定常流动情况下以及在应用非表示尺度的模型时显示出不足。这些缺陷导致在确定成本泛函的最小值期间出现错误的梯度方向,并且是由数值近似(原始)流动状态的连续伴随的不一致引起的。因此,只有有限的控制范围是可能的,此外,原始模拟的流动方程中的所有项都需要是可微的,这肯定不是所有模型的情况。基于计算的原始流动状态,利用离散伴随提供了在数值确定梯度时达到机器精度的可能性。对于高雷诺数的非定常湍流,这一问题还没有得到深入的研究。虽然离散方法是基于数值(即离散原始)流动解的精确方法,但与精确流动解相比,它仍然存在建模和离散化误差。本建议的目的是比较连续和离散方法,在几种定义的流动情况下,通过最小化在很长时间范围内的声音发射到远场。在不同分辨率和雷诺数的情况下,利用数值模拟和大涡模拟的方法进行了比较。离散伴随是应用于同一流动求解器上的自动微分工具(AD-TOOLS)开发的,它是连续伴随控制的基础。这种比较试图找出各自方法的优点和缺点,并打算确定成功的控制高雷诺数湍流流动的方法。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simultaneous single-step one-shot optimization with unsteady PDEs
具有不稳定偏微分方程的同步单步一次性优化
- DOI:10.1016/j.cam.2015.07.033
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:S. Günther;N.R. Gauger;Q. Wang
- 通讯作者:Q. Wang
Spanwise reflection symmetry breaking and turbulence control: plane Couette flow
展向反射对称破缺和湍流控制:平面 Couette 流
- DOI:10.1017/jfm.2014.99
- 发表时间:2014
- 期刊:
- 影响因子:3.7
- 作者:G. Chagelishvili;G. Khujadze;H. Foysi;M. Oberlack
- 通讯作者:M. Oberlack
Numerical optimisation of the pseudopotential-based lattice Boltzmann method
- DOI:10.1016/j.jocs.2016.04.005
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:Knut Küllmer;A. Krämer;D. Reith;W. Joppich;H. Foysi
- 通讯作者:Knut Küllmer;A. Krämer;D. Reith;W. Joppich;H. Foysi
A framework for simultaneous aerodynamic design optimization in the presence of chaos
- DOI:10.1016/j.jcp.2016.10.043
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Stefanie Günther;N. Gauger;Qiqi Wang
- 通讯作者:Stefanie Günther;N. Gauger;Qiqi Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Holger Foysi其他文献
Professor Dr.-Ing. Holger Foysi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Holger Foysi', 18)}}的其他基金
The nature of turbulence in compressible homentropic constant shear flows: its vortex and wave contents and self-sustenance.
可压缩垂直恒定剪切流中湍流的本质:其涡流和波内容以及自维持。
- 批准号:
438287556 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Application of the "Method of Moving Frames" to the magnetohydrodynamic shallow water equations - Conservation Properties and Robustness
“移动框架法”在磁流体动力学浅水方程中的应用——守恒性和鲁棒性
- 批准号:
374462528 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Identification of the Linear Sound Sources in Turbulent free Shear Flows:Non-modal Analysis and Direct Numerical Simulation Study
湍流自由剪切流中线性声源的识别:非模态分析和直接数值模拟研究
- 批准号:
261830592 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Kombinierte experimentelle und numerische Analyse der Fluid-Struktur Interaktion und Wandschubspannung in elastischen Gefäßen bei instationärer Durchströmung
非定常流动过程中弹性容器流固相互作用和壁面剪应力的实验与数值联合分析
- 批准号:
203317824 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Turbulente Mischung und Verbrennung in kompressiblen Scherschichten - Simulation und Beeinflussung
可压缩剪切层中的湍流混合和燃烧 - 模拟和操纵
- 批准号:
57812851 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
ColtBig: Compressible and thermal lattice Boltzmann methods on interpolation-based grids
ColtBig:基于插值网格的可压缩和热晶格玻尔兹曼方法
- 批准号:
439383920 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
最优证券设计及完善中国资本市场的路径选择
- 批准号:70873012
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
慢性阻塞性肺病机械通气时最佳呼气末正压的生理学研究
- 批准号:30770952
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
A Potent D-peptide Inhibitor of TNFα for Treatment of Rheumatoid Arthritis
一种有效的 TNFα D 肽抑制剂,用于治疗类风湿性关节炎
- 批准号:
10822182 - 财政年份:2023
- 资助金额:
-- - 项目类别:
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
- 批准号:
2226936 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
- 批准号:
2890822 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
- 批准号:
23H01136 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
- 批准号:
23K13359 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Personalized Surgical Approach for the Treatment of Children with Obstructive Sleep Apnea and Small Tonsils
治疗患有阻塞性睡眠呼吸暂停和小扁桃体的儿童的个性化手术方法
- 批准号:
10634395 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
- 批准号:
10741703 - 财政年份:2023
- 资助金额:
-- - 项目类别:
An integrated community-clinic model of optimized implementation strategies to increase early detection of breast and cervical cancers in Kenya
优化实施策略的综合社区诊所模型,以提高肯尼亚乳腺癌和宫颈癌的早期发现率
- 批准号:
10876524 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Designing a mobile intervention for dysregulated eating and weight gain prevention in adolescents
设计针对青少年饮食失调和体重增加预防的移动干预措施
- 批准号:
10711350 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Long-Term Trajectories of Accelerated Biological Aging and Functional Decline Associated with Breast Cancer and its Treatment
与乳腺癌及其治疗相关的加速生物衰老和功能衰退的长期轨迹
- 批准号:
10729432 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




