Acceleration of Distributed Discrete Event Simulation with Intelligent Approximation of Look-Ahead
利用前瞻智能逼近加速分布式离散事件仿真
基本信息
- 批准号:262235653
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One major problem of distributed discrete event simulation is its relative poor performance due to the huge overhead to maintain the order of causality, which guarantees the correctness of the simulation. As result, the execution time cannot be reduced significantly compared to sequential simulation. This holds especially when the processes are tightly coupled and the look-ahead is very short. On the other hand, there usually is a great amount of events in the simulation of a wide range of models, where a limited deviation in the execution time of these events has a very small influence on the correctness of the final simulation result. Thus the simulation does not need to be exact regarding the time stamp and the order of every single event. Acceptance of such deviations in a controlled way provides a mechanism to achieve the trade-off between simulation accuracy and execution time.The main objective of this project is to develop a methodology, so that the execution time of the simulation will be reduced by tolerating such deviations to a certain extent while the result still has acceptable accuracy. To achieve this objective, we propose a new approach of distributed simulation with semi-conservative look-ahead estimation. In this approach, we consider to estimate the look-ahead permitting limited over-estimation. The over-estimation might result in causality errors, which will be dismissed by a very efficient recovery procedure at the expense of errors in the simulation result. Acceptance of such over-estimation is a way to maximize the look-ahead that results in a reduction of the execution time of the simulation.
分布式离散事件仿真的一个主要问题是其性能相对较差,这是由于维护因果关系顺序的开销巨大,这保证了仿真的正确性。因此,与顺序模拟相比,不能显著减少执行时间。当流程紧密耦合并且前瞻时间非常短时,这一点尤其有效。另一方面,在广泛的模型的仿真中通常存在大量的事件,其中这些事件的执行时间的有限偏差对最终仿真结果的正确性具有非常小的影响。因此,模拟不需要关于每个单个事件的时间戳和顺序是精确的。以受控的方式接受这种偏差提供了一种机制,以实现模拟精度和执行时间之间的权衡。本项目的主要目标是开发一种方法,以便通过在一定程度上容忍这种偏差来减少模拟的执行时间,同时结果仍然具有可接受的精度。为了实现这一目标,我们提出了一种新的分布式仿真方法与半保守前瞻估计。在这种方法中,我们考虑估计前瞻允许有限的高估。过度估计可能会导致因果关系错误,这将被一个非常有效的恢复过程以牺牲仿真结果中的错误为代价而消除。接受这种高估是一种最大化前瞻的方式,这导致了仿真执行时间的减少。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving the performance of distributed discrete event simulation by exchange of conditional look‐ahead
通过交换条件前瞻提高分布式离散事件仿真的性能
- DOI:10.1002/cpe.3811
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:M. Becker;H. Szczerbicka
- 通讯作者:H. Szczerbicka
Approximate Distributed Discrete Event Simulation using Semi-Conservative Look-Ahead Estimation
使用半保守前瞻估计的近似分布式离散事件仿真
- DOI:10.1109/ds-rt47707.2019.8958660
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:M. O’Connor;M. Becker;H. Szczerbicka
- 通讯作者:H. Szczerbicka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr.-Ing. Helena Szczerbicka其他文献
Professorin Dr.-Ing. Helena Szczerbicka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr.-Ing. Helena Szczerbicka', 18)}}的其他基金
Self-protecting and survivable ad hoc wireless networks benefiting from the efficiency of mechanisms in the Biological immune system
受益于生物免疫系统机制的效率的自我保护和可生存的特设无线网络
- 批准号:
14270754 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Distributed Discrete-Event Systems: the design of security and privacy for cyber-physical systems
分布式离散事件系统:网络物理系统的安全和隐私设计
- 批准号:
RGPIN-2019-05966 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Discrete-Event Systems: the design of security and privacy for cyber-physical systems
分布式离散事件系统:网络物理系统的安全和隐私设计
- 批准号:
RGPIN-2019-05966 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Discrete-Event Systems: the design of security and privacy for cyber-physical systems
分布式离散事件系统:网络物理系统的安全和隐私设计
- 批准号:
RGPIN-2019-05966 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Discrete-Event Systems: the design of security and privacy for cyber-physical systems
分布式离散事件系统:网络物理系统的安全和隐私设计
- 批准号:
RGPIN-2019-05966 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Discrete-Event Systems: Equilibrium, Control and Communication
分布式离散事件系统:平衡、控制和通信
- 批准号:
RGPIN-2014-06213 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Discrete-Event Systems: Equilibrium, Control and Communication
分布式离散事件系统:平衡、控制和通信
- 批准号:
RGPIN-2014-06213 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Robust and Adaptive Distributed Control of Discrete-Event Systems: A Supervisor Localization Based Approach
离散事件系统的鲁棒自适应分布式控制:基于监控器本地化的方法
- 批准号:
16K18122 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Distributed Discrete-Event Systems: Equilibrium, Control and Communication
分布式离散事件系统:平衡、控制和通信
- 批准号:
RGPIN-2014-06213 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Discrete-Event Systems: Equilibrium, Control and Communication
分布式离散事件系统:平衡、控制和通信
- 批准号:
RGPIN-2014-06213 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A Discrete Event Simulation Framework for Distributed GPGPU Environments
分布式 GPGPU 环境的离散事件仿真框架
- 批准号:
26730044 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)