Probing fractal abnormal grain growth at the nanoscale: a percolation scenario with microstructurally based selection rules
探测纳米尺度的分形异常晶粒生长:具有基于微观结构的选择规则的渗透场景
基本信息
- 批准号:262772036
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Thanks to their large grain boundary area per unit volume, nanocrystalline materials find themselves quite far removed from thermodynamic equilibrium, as the excess energy stored in grain boundaries provides a huge driving force for coarsening of the nanoscale microstructure. The resulting grain growth typically proceeds in an abnormal manner, with a small fraction of grains growing to extremely large sizes at the expense of the nanometer-sized grains still present in the surrounding matrix. Such behavior is also observed in conventional, coarser-grained polycrystalline metals and ceramics, although it is not their usual mode of coarsening. Surprisingly, neither at the microscale nor at the nanoscale do we have an adequate grasp of the circumstances enabling abnormally growing grains to establish and maintain a remarkable growth advantage over their neighbors. This mystery is compounded at the nanoscale, where recent studies discovered that abnormally growing grains in nanocrystalline model systems (Pd and Pd-Au alloys) develop highly irregular, almost tumor-like shapes! The corresponding grain perimeters are found to be fractal in nature, much like those of structures formed upon the forced migration of domain walls through a randomly distributed field of pinning sites. Moreover, these abnormally growing grains exhibit fractal dimensionalities that closely match those of domains generated by known percolation processes.Inspired by this observation, we hypothesize that abnormal grain growth can be understood at the nanoscale as a manifestation of a percolation phenomenon occurring on a "network" defined by the initial arrangement of nanocrystalline matrix grains. This concept will be scrutinized by a combination of state-of-the-art electron microscopy and large-scale phase field simulation of microstructural evolution. The great advantage of the percolation scenario is its amenability to, on the one hand, exploratory testing of various "selection rules" for accelerated boundary migration (evaluating their impact on the development of fractality) and, on the other hand, providing a framework for narrowing down the experimental search for microscopic factors (such as grain boundary misorientations or concentration gradients) of possible relevance to the physical mechanism(s) governing fractal abnormal grain growth. Ultimately, the experimental findings will be translated into a minimal set of selection rules and inserted into a modified phase field model allowing for simultaneous abnormal and curvature-driven grain growth. The simulation results will be validated with respect to statistically averaged and local measures for growth kinetics and grain morphologies.
由于其每单位体积的大的晶界面积,纳米晶材料发现它们自身远离热力学平衡,因为储存在晶界中的过量能量为纳米级微结构的粗化提供了巨大的驱动力。所得到的晶粒生长通常以异常的方式进行,其中小部分晶粒以仍然存在于周围基质中的纳米尺寸的晶粒为代价生长到极大的尺寸。这种行为也在常规的粗晶粒多晶金属和陶瓷中观察到,尽管这不是它们通常的粗化模式。令人惊讶的是,无论是在微米尺度还是在纳米尺度上,我们都没有充分掌握使异常生长的颗粒能够建立并保持相对于其邻居的显着生长优势的环境。这个谜团在纳米尺度上更加复杂,最近的研究发现,纳米晶体模型系统(Pd和Pd-Au合金)中异常生长的晶粒会形成高度不规则的,几乎像肿瘤一样的形状!相应的晶粒周长被发现是分形的性质,很像那些通过随机分布的钉扎位点域壁的强制迁移后形成的结构。此外,这些异常生长的晶粒表现出分形维数,密切配合已知的渗流processes. Inspiration所产生的域,我们假设,异常晶粒生长可以理解为在纳米级的表现形式的渗流现象发生在“网络”所定义的纳米晶基体晶粒的初始排列。这一概念将通过结合最先进的电子显微镜和大规模相场模拟微观结构的演变进行审查。逾渗方案的最大优点是,一方面,它可以对加速边界迁移的各种“选择规则”进行探索性测试(评估它们对分形发展的影响),另一方面,为缩小微观因素的实验研究范围提供了一个框架,(如晶界取向差或浓度梯度)可能与控制分形异常晶粒生长的物理机制相关。最终,实验结果将被翻译成一个最小的选择规则集,并插入到一个修改后的相场模型,允许同时异常和曲率驱动的晶粒生长。模拟结果将进行验证,相对于统计平均和本地的生长动力学和晶粒形态的措施。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of rapid annealing on the evolution of fractal abnormal grains in nanocrystalline Pd–10 at% Au
影响%20of%20rapid%20annealing%20on%20the%20evolution%20of%20fractal%20abnormal%20grains%20in%20nano crystal%20Pdâ10%20at%%20Au
- DOI:10.1088/1757-899x/580/1/012055
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Raphael A. Zeller;Harms J. Fey;Christian Braun;Rainer Birringer;Carl E. Krill III
- 通讯作者:Carl E. Krill III
Orientation mapping linked to fractal analysis: A method for studying abnormal grain growth in nanocrystalline PdAu
与分形分析相关的取向映射:一种研究纳米晶 PdAu 中异常晶粒生长的方法
- DOI:10.1063/5.0029832
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:Christian Braun;Raphael A. Zeller;Hanadi Menzel;Jörg Schmauch;Carl E. Krill III;Rainer Birringer
- 通讯作者:Rainer Birringer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Rainer Birringer其他文献
Professor Dr. Rainer Birringer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Rainer Birringer', 18)}}的其他基金
Grain boundary plasticity in nanocrystalline alloys: Transition to glassy behavior?
纳米晶合金中的晶界塑性:向玻璃行为的转变?
- 批准号:
250679794 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Tripellinienenergie in nanokristallinen Materialien
纳米晶材料中的三线能量
- 批准号:
76802890 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Untersuchung der plastischen Verformung nanokristalliner Metalle unter verschiedenen Spannungszuständen mit hoch ortsauflösenden und makroskopisch mittelnden Prüfverfahren.
使用高空间分辨率和宏观平均测试方法研究不同应力状态下纳米晶金属的塑性变形。
- 批准号:
28853629 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Units
Grenzflächenspannungen in nanostrukturierten Materialien
纳米结构材料中的界面张力
- 批准号:
5236582 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
ABR颗粒污泥的多尺度结构形态、理化特征与分子生态学解析
- 批准号:50578012
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
树木形态与生长发育分形(Fractal)特性及模型研究
- 批准号:39670598
- 批准年份:1996
- 资助金额:9.0 万元
- 项目类别:面上项目
Fractal几何与调和分析的相关问题
- 批准号:19371062
- 批准年份:1993
- 资助金额:2.2 万元
- 项目类别:面上项目
分形FRACTAL分析在肿瘤病理中的意义
- 批准号:39270299
- 批准年份:1992
- 资助金额:4.0 万元
- 项目类别:面上项目
Fractal几何及其应用
- 批准号:19171066
- 批准年份:1991
- 资助金额:0.5 万元
- 项目类别:面上项目
随机场的样本轨道与Fractal几何
- 批准号:19101030
- 批准年份:1991
- 资助金额:0.8 万元
- 项目类别:青年科学基金项目
岩石损伤断裂的分形(FRACTAL)研究
- 批准号:18902016
- 批准年份:1989
- 资助金额:3.0 万元
- 项目类别:青年科学基金项目
宇宙结构的分形(FRACTAL)特征,分形湍流
- 批准号:18973009
- 批准年份:1989
- 资助金额:1.0 万元
- 项目类别:面上项目
断片(Fractal)几何及其应用
- 批准号:18870455
- 批准年份:1988
- 资助金额:1.0 万元
- 项目类别:面上项目
分形(Fractal)在材料断口定量分析中的应用
- 批准号:58870056
- 批准年份:1988
- 资助金额:3.5 万元
- 项目类别:面上项目
相似海外基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
進行性肺線維症におけるCT定量評価の有用性:肺陰影/構造変化とFractal性の解析
定量 CT 评估在进行性肺纤维化中的有用性:肺阴影/结构变化和分形性质的分析
- 批准号:
24K18794 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Dynamical Systems and Fractal Geometry
会议:动力系统和分形几何
- 批准号:
2402022 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: CBMS Conference: Algorithmic Fractal Dimensions
会议:CBMS 会议:分形维数算法
- 批准号:
2329555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Biomaterials built by biology: Mechanism and applications of hyperbranched fractal plasmonic structures
生物学构建的生物材料:超支化分形等离子体结构的机理和应用
- 批准号:
2242375 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Harmonic Analysis and Fractal Sets
调和分析与分形集会议
- 批准号:
2247346 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A Study of Model Extraction Attack with Fractal Images
分形图像模型提取攻击研究
- 批准号:
23K16910 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Topological Dynamics of Hyperbolic and Fractal Lattices
合作研究:双曲和分形格子的拓扑动力学
- 批准号:
2414984 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Thermodynamic Formalism and Dimension of Overlapping Fractal Measures
热力学形式主义和重叠分形测度的维数
- 批准号:
2905612 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




