Effect of a capillary force induced network on the development of cracks in nanoparticle films
毛细管力诱导网络对纳米颗粒薄膜裂纹发展的影响
基本信息
- 批准号:263644168
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cracks are a major problem in the manufacture of uniform thin films from nanoparticle dispersions onto rigid substrates. Particle mobility and formation of cracks can degrade the film properties or even result in a total loss of functionality. Cracks are usually formed through the movement of particles near the drying front (as in coffee stains) or from the accumulated stress associated with the shrinkage as the solvent is evaporated (as in dried mud). Cracks are often prevented by reducing the rate of evaporation with sophisticated temperature and humidity profiles or fixed using repeated annealing; both methods increase the time and cost of manufacturing. We propose that the strong particle network found in capillary suspensions can be used to increase the material strength and reduce particle mobility, thereby reducing the formation of cracks under fast drying conditions. Preliminary investigations have revealed that the addition of small amounts of a secondary fluid to a suspension, forming so-called capillary suspensions, can reduce cracking in thin films. In this project, the extent of cracking will be investigated as a function of the secondary fluid content, drying conditions, and material properties. The cracking will be correlated to the rate of evaporation of the two fluids as well as microstructural changes as monitored using particle tracking. This cracking will also be correlated with rheological measurements of the suspension. We will then investigate the mechanism of cracking and determine the parameters controlling the formation and size of cracks. Finally, these control parameters will be applied towards the creation of model crack-free films for printable thin film solar cells and flexible electronics.
裂纹是由纳米颗粒分散体在刚性基底上制造均匀薄膜的主要问题。颗粒的移动性和裂纹的形成会降低膜的性能,甚至导致功能的完全丧失。裂缝通常是通过干燥前沿附近的颗粒运动(如咖啡渍)或溶剂蒸发时与收缩相关的累积应力(如干泥)形成的。通常通过复杂的温度和湿度曲线降低蒸发速率来防止裂纹,或者使用重复退火来固定裂纹;这两种方法都增加了制造时间和成本。我们提出,在毛细悬浮液中发现的强颗粒网络可用于增加材料强度并降低颗粒流动性,从而减少快速干燥条件下裂纹的形成。初步研究表明,向悬浮液中加入少量的二次流体,形成所谓的毛细悬浮液,可以减少薄膜的破裂。在本项目中,将研究开裂程度与二次流体含量、干燥条件和材料特性的关系。开裂将与两种流体的蒸发速率以及使用颗粒跟踪监测的微观结构变化相关。这种破裂也将与悬浮液的流变学测量相关。然后,我们将研究开裂的机制,并确定控制裂纹的形成和尺寸的参数。最后,这些控制参数将被应用于创建可印刷薄膜太阳能电池和柔性电子产品的模型无裂纹膜。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces.
- DOI:10.1021/acsami.6b13624
- 发表时间:2017-03-29
- 期刊:
- 影响因子:9.5
- 作者:Schneider M;Maurath J;Fischer SB;Weiß M;Willenbacher N;Koos E
- 通讯作者:Koos E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Norbert Willenbacher, since 10/2016其他文献
Professor Dr. Norbert Willenbacher, since 10/2016的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Brain capillary Piezo1 ion channels and blood flow regulation in Alzheimer’s Disease
阿尔茨海默病中的脑毛细血管 Piezo1 离子通道和血流调节
- 批准号:
10662664 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Endothelial Piezo1 channel and cerebral blood flow control
内皮Piezo1通道与脑血流控制
- 批准号:
10719633 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding the merging dynamics of surface nanobubbles and the resulting capillary force between particles from molecular simulations
通过分子模拟了解表面纳米气泡的合并动力学以及颗粒之间产生的毛细管力
- 批准号:
2310901 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
原子間力顕微鏡による三相界線ナノ構造のダイナミック解析
使用原子力显微镜对三相场线纳米结构进行动态分析
- 批准号:
21K14097 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
A new diagnostic tool for rapid detection and characterization of REPEAT SEQUENCES in inherited diseases
一种新的诊断工具,用于快速检测和表征遗传性疾病中的重复序列
- 批准号:
10682387 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A new diagnostic tool for rapid detection and characterization of REPEAT SEQUENCES in inherited diseases
一种新的诊断工具,用于快速检测和表征遗传性疾病中的重复序列
- 批准号:
10354657 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Regulation of portal hypertension through neutrophil-platelet interactions in liver sinusoids
通过肝窦中的中性粒细胞-血小板相互作用调节门脉高压
- 批准号:
10541034 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Regulation of portal hypertension through neutrophil-platelet interactions in liver sinusoids
通过肝窦中的中性粒细胞-血小板相互作用调节门脉高压
- 批准号:
10618977 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Particle distribution on interface effect on capillary force and cracking during drying of colloidal dispersion film
胶体分散膜干燥过程中界面颗粒分布对毛细管力和开裂的影响
- 批准号:
21K20410 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Brain Capillary Mechanosensation by Piezo1 Channels in Health and Disease
Piezo1 通道在健康和疾病中的脑毛细血管机械感觉
- 批准号:
10447833 - 财政年份:2020
- 资助金额:
-- - 项目类别: