Endothelial Piezo1 channel and cerebral blood flow control
内皮Piezo1通道与脑血流控制
基本信息
- 批准号:10719633
- 负责人:
- 金额:$ 59.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAfrican American populationAngiotensin IIAnimalsBlood VesselsBlood capillariesBlood flowBrainBrain regionCapillary Endothelial CellCardiovascular DiseasesCationsCellsCerebrovascular CirculationCerebrovascular systemCharacteristicsChronicCoupledCuesDataDecelerationDiseaseElectrophysiology (science)Endothelial CellsEndotheliumEngineeringFeedbackFoundationsFrictionFutureGeneticGenetic EngineeringGenetically Engineered MouseGoalsHealthHigh PrevalenceHumanHyperemiaHypertensionImageInteroceptionKineticsKnock-outKnockout MiceLaser-Doppler FlowmetryLasersLearningMeasurementMeasuresMechanicsMediatingMembrane PotentialsMemoryMetabolicMonitorMusMutationNeuronsNitric OxideOutcomePeripheralPiezo 1 ion channelPopulationPositioning AttributeProbabilityProductionProteinsRegional Blood FlowRegulationRelaxationReportingResearchRisk FactorsShapesSignal TransductionStimulusSystemTestingTransgenic MiceTranslatingUnited States National Institutes of HealthVasodilator AgentsVibrissaeWorkarteriolebehavior testblood pressure regulationbrain endothelial cellbrain healthcerebral capillarycerebrovascularclinically relevantdruggable targetexperiencefluorescence imaginggain of functiongain of function mutationhemodynamicshypertensiveimprovedin vivointerestmechanical drivemechanical forcemechanical stimulusmouse modelneuralneurotransmissionneurovascular couplingnew therapeutic targetnovelpharmacologicpreventresponseshear stressspatiotemporaltime usetwo photon microscopytwo-photon
项目摘要
Project Summary/Abstract:
Cerebral blood flow (CBF) is precisely controlled to satisfy neuronal metabolic demands. Active neurons signal
to the vasculature via multiple neurovascular coupling mechanisms to increase regional blood flow in a
phenomenon known as functional hyperemia (FH). The hyperemic response increases the frictional forces
imposed by blood flow onto endothelial cells (ECs) of arterioles and capillaries. We have recently demonstrated
that the Piezo1 channel is a crucial mechanosensor in brain capillary ECs, and that it mediates Ca2+ signals in
response to mechanical stimuli. However, the impact of Piezo1 signaling on CBF control remains unknown. In
response to the NIH Notice of Special Interest (NOT-AT-21-002) “Promoting Research on Interoception and Its
Impact on Health and Disease,” we provide compelling preliminary evidence that Piezo1-mediated interoception
is crucial in CBF regulation, and that this mechanism is compromised during hypertension. Building on our
preliminary data, we aim to test the overarching hypothesis that cerebrovascular Piezo1 regulates CBF at the
local capillary level and at the large-scale level in extended brain regions. Aim 1 will employ EC-specific
genetically encoded Ca2+ indicator mice, widefield and two-photon fluorescence imaging to determine the spatial,
temporal, and spread characteristics of Piezo1-mediated Ca2+ transients in brain capillaries. Moreover, we will
use genetic and pharmacological approaches to determine if Ca2+ signaling mediated by Piezo1 is coupled to
the production of the potent vasodilator nitric oxide to increase local capillary blood flow. In Aim 2, we will
determine how large-scale Piezo1 activation during FH triggers a cationic conductance, which dampens
hyperpolarization-mediated FH, much like a built-in brake system. To achieve this goal, we will use genetically
engineered mice with reduced Piezo1 activity in all ECs or brain ECs, along with near infrared laser imaging,
and laser doppler flowmetry. In Aim 3, we will determine if cerebrovascular Piezo1 signaling is compromised in
hypertension and whether a Piezo1 channelopathy-like effect leads ultimately to CBF deficits. We will directly
measure Piezo1 channel activity and CBF in two mouse models of hypertension and in genetically engineered
transgenic mice that harbor a human Piezo1 mutation. Use of this mutation is clinically relevant, in that PIEZO1
mutations are prevalent in African Americans, a population with the highest prevalence of hypertension
worldwide. Completion of this project will support the concept that Piezo1 is crucial in CBF regulation, and that
alteration of its activity is a novel risk factor for CBF decline. This work will further provide new therapeutic targets
for improving CBF in cardiovascular disease.
项目摘要/摘要:
精确控制脑血流量(CBF)以满足神经元代谢需求。活跃的神经元信号
通过多种神经血管耦合机制进入脉管系统,以增加局部血流量
现象称为功能性充血(FH)。充血反应增加摩擦力
由血流施加到小动脉和毛细血管的内皮细胞(EC)上。我们最近展示了
Piezo1 通道是脑毛细血管内皮细胞中至关重要的机械传感器,并且它介导 Ca2+ 信号
对机械刺激的反应。然而,Piezo1 信号传导对 CBF 控制的影响仍不清楚。在
对 NIH 特别关注通知 (NOT-AT-21-002)“促进内感受及其研究”的回应
对健康和疾病的影响”,我们提供了令人信服的初步证据,证明 Piezo1 介导的内感受
在 CBF 调节中至关重要,并且这种机制在高血压期间会受到损害。建立在我们的
初步数据,我们的目的是测试脑血管 Piezo1 调节 CBF 的总体假设
局部毛细血管水平和扩展大脑区域的大规模水平。目标 1 将采用 EC 特定的
基因编码的 Ca2+ 指示小鼠,宽场和双光子荧光成像以确定空间,
脑毛细血管中 Piezo1 介导的 Ca2+ 瞬变的时间和传播特征。此外,我们将
使用遗传和药理学方法来确定 Piezo1 介导的 Ca2+ 信号是否与
产生强效血管扩张剂一氧化氮,以增加局部毛细血管血流量。在目标 2 中,我们将
确定 FH 期间大规模 Piezo1 激活如何触发阳离子电导,从而抑制
超极化介导的跳频,很像内置制动系统。为了实现这一目标,我们将利用基因
工程小鼠的所有 EC 或大脑 EC 中的 Piezo1 活性均降低,并进行近红外激光成像,
和激光多普勒血流计。在目标 3 中,我们将确定脑血管 Piezo1 信号传导是否受到损害
高血压以及 Piezo1 通道病样效应是否最终导致 CBF 缺陷。我们将直接
测量两种高血压小鼠模型和基因工程小鼠中的 Piezo1 通道活性和 CBF
携带人类 Piezo1 突变的转基因小鼠。这种突变的使用具有临床相关性,因为 PIEZO1
突变在非裔美国人中普遍存在,这是高血压患病率最高的人群
全世界。该项目的完成将支持 Piezo1 在 CBF 调节中至关重要的概念,并且
其活性的改变是 CBF 下降的一个新的危险因素。这项工作将进一步提供新的治疗靶点
改善心血管疾病的 CBF。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Osama F Harraz其他文献
Osama F Harraz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Osama F Harraz', 18)}}的其他基金
Brain Capillary Mechanosensation by Piezo1 Channels in Health and Disease
Piezo1 通道在健康和疾病中的脑毛细血管机械感觉
- 批准号:
10447833 - 财政年份:2020
- 资助金额:
$ 59.32万 - 项目类别:
Brain Capillary Mechanosensation by Piezo1 Channels in Health and Disease
Piezo1 通道在健康和疾病中的脑毛细血管机械感觉
- 批准号:
10308806 - 财政年份:2020
- 资助金额:
$ 59.32万 - 项目类别:
Brain Capillary Mechanosensation by Piezo1 Channels in Health and Disease
Piezo1 通道在健康和疾病中的脑毛细血管机械感觉
- 批准号:
10311469 - 财政年份:2020
- 资助金额:
$ 59.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 59.32万 - 项目类别:
Research Grant














{{item.name}}会员




