Local bifurcation analysis and global numerical pathfollowing for Turing patterns in 3D reaction--diffusion systems
3D 反应扩散系统中图灵模式的局部分岔分析和全局数值路径跟踪
基本信息
- 批准号:264671738
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Turing patterns are solutions of partial differential equations (PDE) that arise from an instability of a spatially homogeneous stationary solution, which is stable with respect to spatially homogeneous perturbations, but unstable with respect to spatially periodic perturbations. The original modeling was motivated by pattern formation in embryos. However, Turing patterns occur in a variety of systems in nature, and thus also in a variety of PDE models. The local theory is well developed in one or two spatial dimensions, and Turing patterns can be well predicted using amplitude equations near bifurcation from a homogeneous solution. However, many physically relevant systems are genuinely three dimensional (3D), and in 3D the theory becomes much more complicated and is much less developed. Moreover, also numerical calculations of Turing patterns in 3D are rather rare and not systematic. The goal of this project is to use a combination of analysis and numerics to develop tools which allow systematically to study the bifurcation scenario for 3D Turing patterns. Besides the local theory near primary bifurcations, we also aim at a more global picture of the solution space. For this, preparatory work extending the 2D software package pde2path to 3D shall be continued, to also study branches of 3D Turing patterns further away from their primary bifurcation, and to study their secondary and higher order bifurcations, including hetero--and homoclinic connections between different patterns.
图灵模式是偏微分方程组(PDE)的解,它源于空间齐次定常解的不稳定性,该定常解相对于空间均匀扰动是稳定的,但相对于空间周期扰动是不稳定的。最初的建模是由胚胎中的图案形成驱动的。然而,图灵模式在自然界中存在于各种系统中,因此也存在于各种PDE模型中。局域理论在一维或两维空间中得到了很好的发展,从齐次解出发,利用分叉附近的振幅方程可以很好地预测图灵图案。然而,许多与物理相关的系统是真正的三维(3D),而在3D中,理论变得更加复杂,也远远落后于发展。此外,图灵图案在3D中的数值计算也相当罕见,而且不是系统的。这个项目的目标是使用分析和数值相结合的方法来开发工具,使之能够系统地研究3D图灵图案的分叉场景。除了初等分支附近的局部理论外,我们还着眼于解空间的更全局的图景。为此,应继续开展将2D软件包pde2Path扩展到3D的准备工作,研究远离其初级分叉的3D图灵图案的分支,并研究其二次和高阶分叉,包括不同图案之间的异位和同宿联系。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pattern analysis in a benthic bacteria-nutrient system.
底栖细菌-营养系统的模式分析
- DOI:10.3934/mbe.2015004
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:D. Wetzel
- 通讯作者:D. Wetzel
Defectlike structures and localized patterns in the cubic-quintic-septic Swift-Hohenberg equation.
三次五次脓毒症 Swift-Hohenberg 方程中的缺陷状结构和局部模式
- DOI:10.1103/physreve.100.012204
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:E. Knobloch;H. Uecker;D. Wetzel
- 通讯作者:D. Wetzel
Snaking branches of planar BCC fronts in the 3D Brusselator
3D Brusselator 中平面 BCC 前沿的蜿蜒分支
- DOI:10.1016/j.physd.2020.132383
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:H. Uecker;D. Wetzel
- 通讯作者:D. Wetzel
Tristability between stripes, up-hexagons, and down-hexagons and snaking bifurcation branches of spatial connections between up- and down-hexagons.
条纹、上六边形、下六边形之间的三态性以及上下六边形空间连接的蛇形分叉分支
- DOI:10.1103/physreve.97.062221
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:D. Wetzel
- 通讯作者:D. Wetzel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hannes Uecker其他文献
Professor Dr. Hannes Uecker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Hannes Uecker', 18)}}的其他基金
Reduktionsmethoden und Stabilität in Flüssigströmungen mit freiem Rand über geneigte Platten
斜板自由边界流体流动的还原方法和稳定性
- 批准号:
5317222 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
偶偶核集体带DeltaI=4bifurcation现象和拉伸效应的机制
- 批准号:19875020
- 批准年份:1998
- 资助金额:7.5 万元
- 项目类别:面上项目
化学反应器设计中的分支(Bifurcation)问题
- 批准号:28670493
- 批准年份:1986
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
- 批准号:
10810399 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Analysis of the bifurcation between COVID-19 and conventional ARDS from the viewpoint of collagen regulation.
从胶原调节的角度分析COVID-19与传统ARDS的分歧。
- 批准号:
22K09173 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Bifurcation Analysis of Geophysical Fluid Systems
地球物理流体系统的数值分岔分析
- 批准号:
DDG-2022-00023 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Development Grant
Application of Numerical Bifurcation Analysis to Geophysical Fluid Systems
数值分岔分析在地球物理流体系统中的应用
- 批准号:
RGPIN-2014-06257 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Numerical Bifurcation Analysis of Heat Transfer by the Edge Plasma of a Tokamak
托卡马克边缘等离子体传热的数值分岔分析
- 批准号:
2580871 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Bifurcation Analysis of Atmospheric Regime Occupation
大气状态占用的分岔分析
- 批准号:
552770-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Nonlinear model reduction for bifurcation analysis of complex aero-elastic models
用于复杂气动弹性模型分岔分析的非线性模型简化
- 批准号:
2434237 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Numerical Bifurcation Analysis of a Cell Mechanics Model
细胞力学模型的数值分岔分析
- 批准号:
552999-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Bifurcation analysis method for transient phenomena and its application to mathematical cardiac systems
瞬态现象的分岔分析方法及其在数学心脏系统中的应用
- 批准号:
20K11853 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Bifurcation Analysis of an ODE model for cancer metastasis
癌症转移 ODE 模型的分岔分析
- 批准号:
554224-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards