Impact of Multiphase Mass and Energy Transport Processes on Water Electrolysis in Polymer Electrolyte Membrane Cells

多相质量和能量传输过程对聚合物电解质膜电池中水电解的影响

基本信息

项目摘要

Due to the continuous increase of renewable energy in the energy distribution system, the increase of surplus electrical energy supply is foreseeable. In this context, water electrolysis is a key technology able to convert electrical energy into hydrogen which can be used as energy storage medium or can be fed into the value chains of the chemical industries. Besides conventional alkaline water electrolysis, a water electrolysis technology based on a Polymer Electrolyte Membrane (PEM) is discussed since several years, which is the focus of this grant proposal. The particular advantages of PEM water electrolysis are higher attainable current densities, higher voltage efficiency, and higher load flexibility. Current disadvantages include far lower technical maturity, shorter life time, and higher specific costs compared to alkaline water electrolysis. The main reason for the higher costs of PEM electrolysis cells is, apart from expensive materials used in these cells, the far too small dimension of the single cells from which large-scale PEM electrolysis stacks should be built in the future. The prerequisite for the further increase of the cell area is the comprehensive understanding of the two-phase mass and energy transport phenomena taking place in PEM electrolysers. Controlling these transport phenomena is of paramount importance for optimal process operation and optimal design of the electrolysis cells. Thus, the aim of the here proposed project is to analyze and quantify the impact of two-phase mass and energy transport phenomena on the performance of PEM electrolysis cells. The work plan comprises (1) the experimental characterization and the model-based description of the local transport phenomena in the porous current collectors, the catalytic layers and the polymer electrolyte membrane, (2) the experimental characterization of the transport phenomena occurring in the anode flow channels of the electrolysis cell, and (3) the investigation of the coupling of transport processes taking place in the channel and in the membrane-electrode assembly, as well as their impact on the operational behavior of the cell as a whole.
由于可再生能源在能源分配系统中的不断增加,过剩电能供应的增加是可以预见的。在这种背景下,水电解是一项能够将电能转化为氢气的关键技术,氢气可以作为储能介质或馈送到化工行业的价值链中。除了传统的碱性水电解,基于聚合物电解质膜(PEM)的水电解技术也是几年来讨论的,这是这项赠款提案的重点。PEM水电解的独特优势是获得更高的电流密度、更高的电压效率和更高的负载灵活性。目前的缺点是与碱性水电解相比,技术成熟度低得多,寿命短,比成本高。PEM电解槽成本较高的主要原因是,除了这些电解槽所使用的昂贵材料外,未来应该用来建造大型PEM电解槽的单个电解槽的尺寸太小。进一步增加电解槽面积的前提是全面了解质子交换膜电解槽中发生的两相质量和能量传输现象。控制这些传输现象对于优化工艺操作和电解槽的优化设计至关重要。因此,本项目的目的是分析和量化两相质量和能量传输现象对质子交换膜电解槽性能的影响。工作计划包括(1)多孔集电体、催化层和聚合物电解质膜中局部传输现象的实验表征和基于模型的描述,(2)电解槽阳极流道中发生的传输现象的实验表征,以及(3)通道和膜-电极组件中发生的传输过程的耦合及其对电池整体运行行为的影响的研究。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of the MEA design on the performance of PEMWE single cells with different sizes
  • DOI:
    10.1007/s10800-018-1178-2
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    C. Immerz;M. Paidar;G. Papakonstantinou;B. Bensmann;T. Bystron;T. Vidaković-Koch;K. Bouzek;K. Sundmacher;R. Hanke‐Rauschenbach
  • 通讯作者:
    C. Immerz;M. Paidar;G. Papakonstantinou;B. Bensmann;T. Bystron;T. Vidaković-Koch;K. Bouzek;K. Sundmacher;R. Hanke‐Rauschenbach
Anodic microporous layer for polymer electrolyte membrane water electrolysers
聚合物电解质膜水电解槽用阳极微孔层
  • DOI:
    10.1007/s10800-017-1110-1
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. Polonský;R. Kodým;P. Vágner;M. Paidar;B. Bensmann;K. Bouzek
  • 通讯作者:
    K. Bouzek
Hydrogen permeation in PEM electrolyzer cells operated at asymmetric pressure conditions
  • DOI:
    10.1149/2.0221611jes
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    P. Trinke;B. Bensmann;S. Reichstein;R. Hanke‐Rauschenbach;K. Sundmacher
  • 通讯作者:
    P. Trinke;B. Bensmann;S. Reichstein;R. Hanke‐Rauschenbach;K. Sundmacher
Impact of Pressure and Temperature on Hydrogen Permeation in PEM Water Electrolyzers Operated at Asymmetric Pressure Conditions
压力和温度对在不对称压力条件下运行的 PEM 水电解槽中氢气渗透的影响
  • DOI:
    10.1149/07514.1081ecst
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Trinke;B. Bensmann;S. Reichstein;R. Hanke-Rauschenbach;K. Sundmacher
  • 通讯作者:
    K. Sundmacher
Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation
  • DOI:
    10.1007/s10800-018-1174-6
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bystron, T.;Vesely, M.;Bouzek, K.
  • 通讯作者:
    Bouzek, K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Richard Hanke-Rauschenbach其他文献

Professor Dr.-Ing. Richard Hanke-Rauschenbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Richard Hanke-Rauschenbach', 18)}}的其他基金

Investigation and technical utilisation of spatio-temporal patterns during the electrochemical preferential oxidation of CO from H2/CO-mixtures
H2/CO 混合物中 CO 电化学优先氧化过程中时空模式的研究和技术应用
  • 批准号:
    224744407
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Mechanical multiphase vibratory phenomena at very low mass ratios
极低质量比下的机械多相振动现象
  • 批准号:
    RGPIN-2019-05335
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Pore-Scale Multiphase Mass Transfer in Porous Electrodes
职业:多孔电极中的孔隙级多相传质
  • 批准号:
    2329821
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multiphase Mass and Heat Transport in Low Permeability Media
低渗透介质中的多相传质和传热
  • 批准号:
    RGPIN-2022-04561
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mechanical multiphase vibratory phenomena at very low mass ratios
极低质量比下的机械多相振动现象
  • 批准号:
    RGPIN-2019-05335
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Innovation of particle method for solid-liquid multiphase flow model by introducing SPS mass transport model
引入SPS传质模型创新粒子法固液多相流模型
  • 批准号:
    21H01433
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mechanical multiphase vibratory phenomena at very low mass ratios
极低质量比下的机械多相振动现象
  • 批准号:
    RGPIN-2019-05335
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Pore-Scale Multiphase Mass Transfer in Porous Electrodes
职业:多孔电极中的孔隙级多相传质
  • 批准号:
    1941083
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mechanical multiphase vibratory phenomena at very low mass ratios
极低质量比下的机械多相振动现象
  • 批准号:
    RGPIN-2019-05335
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Gas/liquid mass transfer in reactive multiphase systems (A10*)
反应多相系统中的气/液传质 (A10*)
  • 批准号:
    397791518
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    CRC/Transregios
Turbulent multiphase flow with interfacial mass and heat transfer: linking microscopic physics to macroscopic mixing
具有界面质量和传热的湍流多相流:将微观物理与宏观混合联系起来
  • 批准号:
    1854475
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了