Resonant delocalisation in random operators

随机算子中的共振离域

基本信息

项目摘要

The goal of this project is to address fundamental issues in the analysis of random quantum many-particle operators. This in particular requires to develop mathematical tools for the analysis. Of particular interest is the possibility of a localization-delocalization transition in random systems of interacting particles. This phase transition, which in physical models causes vanishing or non-vanishing of conduction, is rather well understood in random single-particle models. However, the effects of interaction on this phenomenon still lie rather in the dark. The present work will build on recent progress together with Michael Aizenman which showed that in certain situations extended states emerge through tunnelling which is facilitated in systems with an exponentially growing configuration space by resonances between well separated localization centers. This is the phenomenon of resonant delocalisation which shall be further explored here. In relation to the above mentioned localization-delocalization transition it works on the side of delocalisation. We propose to study this phenomenon in effective mean-field models such as the hierarchical Anderson model. From the mathematical perspective, the proposed research concerns topics which present challenges and opportunities for probability theory and analysis. In particular, a method for analysing random matrix-valued Herglotz-Nevanlinna-Pick functions will have to be developed.
该项目的目标是解决随机量子多粒子算子分析中的基本问题。这尤其需要开发用于分析的数学工具。特别令人感兴趣的是相互作用粒子的随机系统中定位-离域转变的可能性。这种相变在物理模型中会导致传导消失或不消失,但在随机单粒子模型中可以很好地理解。然而,相互作用对这种现象的影响仍然是未知的。目前的工作将建立在与 Michael Aizenman 合作的最新进展的基础上,该进展表明,在某些情况下,扩展状态通过隧道效应出现,这在具有指数增长配置空间的系统中通过良好分离的定位中心之间的共振而得到促进。这就是共振离域现象,这里将进一步探讨。就上述本地化-非本地化转变而言,它在非本地化方面发挥作用。我们建议在有效的平均场模型(例如分层安德森模型)中研究这种现象。从数学角度来看,拟议的研究涉及为概率论和分析带来挑战和机遇的主题。特别是,必须开发一种用于分析随机矩阵值 Herglotz-Nevanlinna-Pick 函数的方法。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Delocalization and Continuous Spectrum for Ultrametric Random Operators
超度量随机算子的离域和连续谱
  • DOI:
    10.1007/s00023-019-00809-z
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. von Soosten;S. Warzel
  • 通讯作者:
    S. Warzel
Correction to: Decay of Determinantal and Pfaffian Correlation Functionals in One-Dimensional Lattices
修正:一维格中行列式和普法夫相关函数的衰减
Boosted Simon‐Wolff Spectral Criterion and Resonant Delocalization
增强的 SimonâWolff 谱准则和共振离域
Decay of correlations and absence of superfluidity in the disordered Tonks–Girardeau gas
无序的 TonksâGirardeau 气体中相关性的衰减和超流动性的缺失
  • DOI:
    10.1088/1367-2630/18/3/035002
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    R. Seiringer;S. Warzel
  • 通讯作者:
    S. Warzel
Renormalization Group Analysis of the Hierarchical Anderson Model
分层安德森模型的重正化群分析
  • DOI:
    10.1007/s00023-016-0549-7
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. von Soosten;S. Warzel
  • 通讯作者:
    S. Warzel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Simone Warzel其他文献

Professorin Dr. Simone Warzel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Simone Warzel', 18)}}的其他基金

Schrödinger-Operatoren mit zufälligen Potentialen oder Magnetfeldern
具有随机势或磁场的薛定谔算子
  • 批准号:
    5418754
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

Sigma delocalisation via Group 13 Homocatenation
通过 Group 13 Homocatenation 进行 Sigma 离域
  • 批准号:
    EP/E05921X/1
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Charge delocalisation and hopping in an ultra-cold atomic lattice
超冷原子晶格中的电荷离域和跳跃
  • 批准号:
    EP/D070287/1
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了