Algebraic cycles and coisotropic subvarieties on irreducible symplectic manifolds
不可约辛流形上的代数环和各向同性子族
基本信息
- 批准号:269045579
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research project is concerned with a central and very active research topic in algebraic geometry: algebraic cycles on irreducible (holomorphic) symplectic manifolds. It mainly pursues two closely related questions: on the one hand, the existence of algebraically coisotropic subvarieties in ISMs and on the other hand, the splitting of Bloch-Beilinson type filtrations the Chow ring of a projective irreducible symplectic manifold.Our project is inspired by a remarkable recent set of conjectures by Claire Voisin concerning the structure of the Chow ring of a projective irreducible symplectic manifold. Voisin presented a far reaching conjectural program where coisotropic subvarieties as well as zero-cycles play a special role. These are beautiful conjectures and their proof would be a cornerstone in the understanding of algebraic cycles on irreducible symplectic manifolds. Moreover, Voisin's framework is rather explicit and in recent years there have been many advances in hyperkähler theory suitable to applications of this kind, so the moment seems to be right to exploit these methods to make progress on the field of algebraic cycles. These conjectures have partially been verified in examples, but there are only very few general results available.The goal is to substantially contribute to the construction of algebraic cycles for hyperkähler varieties by general deformation theoretic methods and to tackle more far reaching problems concerning the splitting of the conjectural Bloch-Beilinson filtration for a concrete maximal algebraic family of irreducible symplectic manifolds.A complete proof of Voisin's conjectures is out of reach. So the long-term goal should be to prove Voisin's conjectures for the known deformation types.
该研究项目涉及代数几何中一个中心和非常活跃的研究课题:不可约(全纯)辛流形上的代数圈。本文主要研究两个密切相关的问题:一方面是ISM中代数上各向同性的子簇的存在性,另一方面是投射不可约辛流形的Chow环的Bloch-Beilinson型滤子的分裂性. Voisin提出了一个影响深远的代数计划,其中共各向同性子簇和零圈起着特殊的作用。这些都是美丽的几何图形,它们的证明将是理解不可约辛流形上代数循环的基石。此外,Voisin的框架是相当明确的,近年来有许多进展hyperkähler理论适用于这种应用,所以现在似乎是正确的利用这些方法取得进展领域的代数周期。这些结构已在实例中得到部分验证,本文的目的是通过一般的变形理论方法,对超kähler簇的代数圈的构造作出实质性的贡献,并解决更深远的关于空间Bloch簇分裂的问题。关于不可约辛流形的具体极大代数族的Beilinson滤子,Voisin的滤子的完整证明是遥不可及的。因此,长期的目标应该是证明Voisin的已知变形类型的假设。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A global Torelli theorem for singular symplectic varieties
- DOI:10.4171/jems/1026
- 发表时间:2016-12
- 期刊:
- 影响因子:0
- 作者:Benjamin Bakker;C. Lehn
- 通讯作者:Benjamin Bakker;C. Lehn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christian Lehn其他文献
Professor Dr. Christian Lehn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christian Lehn', 18)}}的其他基金
Lagrangian fibrations on irreducible symplectic manifolds. Deformations of Lagrangian subvarieties and affine structures.
不可约辛流形上的拉格朗日纤维。
- 批准号:
223506967 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
- 批准号:
DP240102899 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Bloom and bust: seasonal cycles of phytoplankton and carbon flux
繁荣与萧条:浮游植物和碳通量的季节性周期
- 批准号:
2910180 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Understanding how Earth's coupled carbon and sulfur cycles evolved after the oxygenation of the atmosphere
职业:了解地球的耦合碳和硫循环在大气氧化后如何演变
- 批准号:
2339237 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Improving Functional Regeneration and Engraftment of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells by Brief Cycles of Transient Reprogramming
通过短暂的瞬时重编程周期改善人诱导多能干细胞来源的心肌细胞的功能再生和植入
- 批准号:
24K11267 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: P4Climate--Testing Hypotheses of Mesoamerican Hydroclimate over the Last Several Glacial Cycles
合作研究:P4Climate——检验最后几个冰川周期中美洲水气候的假设
- 批准号:
2303487 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant