Algorithms to project convex sets with applications in nonconvex programming and for a calculus of convex sets
投影凸集的算法及其在非凸规划和凸集微积分中的应用
基本信息
- 批准号:271835661
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mathematical problem to project a finite dimensional convex set onto a lower dimensional subspace, where the original convex set is given analytically, plays a key role in this project. The projected set is to be represented in two different ways: In the first approach, the set is approximated by a convex polyhedron. In the second method, it is represented, or if not possible, approximated by linear matrix inequalities.The convex projection problem is to be applied to certain classes of non-convex optimization problems, where we aim to find exact solutions. Among these problem classes there are bilevel problems being convex on the lower level, DC programming problems where a DC representation of the objective function is known, and optimization problems with quasi-concave objective function and convex constraints. In the running project this approach was considered for the polyhedral case. The polyhedral projection problem was shown to be equivalent to vector linear programming (VLP). As a consequence, polyhedral versions of the mentioned global optimization problems can be solved by the VLP solver ‘bensolve’. Corresponding results will be developed for the non-polyhedral convex case. This includes the treatment of scalar global optimization problems by solvers for convex vector optimization problems. Alternatively, we plan to apply modified variants of convex vector optimization algorithms directly to the convex projection problem. So-called localized versions of the algorithms solve a projection problem locally (i.e. in a region of interest of the projected set). Thus they lead to an improved performance when applied to the scalar global optimization problems. In the running project, polyhedral projection was used to implement a numerical calculus for polyhedral convex sets and polyhedral convex function in form of the free software ‘bensolve tools’. This tool box will be extended by features from the non-polyhedral convex case.
将有限维凸集投影到低维子空间上的数学问题,在低维子空间中原凸集是解析给定的,在该问题中起着关键作用。投影集将以两种不同的方式表示:在第一种方法中,该集合由凸多面体近似表示。在第二种方法中,用线性矩阵不等式来表示,或者如果不可能,用线性矩阵不等式来近似。凸投影问题将应用于某些非凸优化问题,我们的目标是找到精确解。在这些问题类别中,有底层凸的双层问题,已知目标函数的DC表示的DC规划问题,以及具有拟凹目标函数和凸约束的优化问题。在运行的项目中,这种方法被考虑用于多面体情况。多面体投影问题等价于向量线性规划(VLP)。因此,上述全局优化问题的多面体版本可以通过VLP求解器“bensolve”来求解。对于非多面体凸情况,将得到相应的结果。这包括通过求解凸向量优化问题来处理标量全局优化问题。或者,我们计划将改进的凸向量优化算法直接应用于凸投影问题。所谓的局部版本的算法解决一个局部的投影问题(即在一个区域的兴趣的投影集)。因此,当应用于标量全局优化问题时,它们可以提高性能。在正在运行的项目中,采用多面体投影,利用自由软件“bensolve tools”实现多面体凸集和多面体凸函数的数值演算。此工具箱将通过非多面体凸情况的特征进行扩展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Andreas Löhne其他文献
Professor Dr. Andreas Löhne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
- 批准号:82371144
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
CD8+T细胞亚群在抗MDA5抗体阳性皮肌炎中的致病机制研究
- 批准号:82371805
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
巨噬细胞通过Piezo1感知组织硬度限制肝脏纤维化的作用机制研究
- 批准号:82371760
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
亚洲人群的新基因和剪接外显子的发现- 通过分析和验证HapMap其他人群的转录组测序(RNA-seq)数据
- 批准号:31171213
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
e-health tools to promote Equality in Quality of Life for childhood to young adulthood cancer patients, survivors and their families - a PanEuropean project supported by PanCare and Harmonic consortia
电子医疗工具可促进儿童到成年癌症患者、幸存者及其家人的生活质量平等 - 这是由 PanCare 和 Harmonic 联盟支持的 PanEuropean 项目
- 批准号:
10098114 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Net Zero Rail Product Commercialisation Project
净零轨产品商业化项目
- 批准号:
10098199 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
- 批准号:
10085992 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Project Incubation: Training Undergraduates in Collaborative Research Ethics
项目孵化:培养本科生合作研究伦理
- 批准号:
2316154 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
HSI Pilot Project: Institutionalizing a Teaching and Learning Excellence Community of Practice focused on First-Year Student Success in STEM
HSI 试点项目:将卓越教学和学习实践社区制度化,重点关注一年级学生在 STEM 方面的成功
- 批准号:
2345247 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
- 批准号:
2345273 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant