Extremum Seeking Control for Dynamic Maps: A Lie Bracket Averaging Framework

动态映射的极值寻求控制:李括号平均框架

基本信息

项目摘要

Extremum seeking is a control method to steer a dynamical system to an extremum (minimum ormaximum) of a partially or completely unknown input-output map associated to a given dynamicalsystem. It has a long history and has found many applications in control problems such as real-time optimization and optimal setpoint regulation in cars, airplanes or in process control.Stability of extremum seeking schemes is often analyzed with the help of classical averaging and singular perturbation theory. Very often, these methods lead to local stability results and the analysis becomes involved in complex extremum seeking tasks such as problems with constraints or unstable plant dynamics. These limitations are not only a drawback for a general theory but also for extending the scope of extremum seeking control to novel applications.Recently, a very promising alternative approach for analyzing extremum seeking schemes basedon Lie bracket averaging techniques has been established by the group of the applicant and their coworkers. The new approach has several advantages. The approach allows to establish strongstability results for extremum seeking schemes and it can be systematically applied to a wide range of problems including extremum seeking problems with manifold constraints as they appear for example in mechanical systems and in synchronization problems. On the other hand, the current results on Lie bracket averaging are mainly limited to static input-output maps. Thus a key advantage of extremum seeking schemes, namely the analysis of dynamic maps, cannot be addressed so far in the Lie bracket averaging approach. Consequently the potential advantages of the new Lie bracket averaging approach in designing advanced extremum seeking schemes, like schemes which can deal with complex constraints and dynamic models, have not been exploited so far. The motivation of this project is to address the above mentioned shortcomings. The goal is to establish a framework for extremum seeking schemes which is based on Lie bracket averaging techniques and which can deal in various ways with dynamic maps and constraints.
极值搜索是一种将动力系统引导到与给定动态系统相关的部分或完全未知的输入-输出映射的极值(最小值或最大值)的控制方法。极值算法有很长的历史,在汽车、飞机或过程控制中的实时优化和最优设定值调节等控制问题中得到了广泛的应用。极值搜索算法的稳定性常常借助于经典的平均和奇异摄动理论进行分析。通常,这些方法会导致局部稳定的结果,并且分析涉及到复杂的极值搜索任务,例如带约束的问题或不稳定的对象动态。这些限制不仅是一般理论的缺陷,也是将极值控制的范围扩展到新的应用的缺陷。最近,申请者和他们的同事们建立了一种非常有前途的基于李括号平均技术的极值寻求方案的分析方法。这种新方法有几个优点。这种方法可以建立极值搜索方案的强稳定性结果,并且可以系统地应用于各种问题,包括具有多种约束的极值搜索问题,例如在机械系统和同步问题中。另一方面,目前关于李括号平均的结果主要局限于静态投入产出映射。因此,极值搜索方案的一个关键优势,即动态地图分析,到目前为止还不能在李括号平均方法中得到解决。因此,新的李括号平均方法在设计高级极值搜索方案方面的潜在优势,如能够处理复杂约束和动态模型的方案,到目前为止还没有得到开发。该项目的动机是解决上述缺陷。目标是建立一个基于李括号平均技术的极值搜索方案的框架,该框架可以以各种方式处理动态映射和约束。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Model-based extremum seeking for a class of nonlinear systems
  • DOI:
    10.1109/acc.2015.7171031
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Michalowsky;C. Ebenbauer
  • 通讯作者:
    Simon Michalowsky;C. Ebenbauer
Extremum Seeking for Time-Varying Functions using Lie Bracket Approximations
  • DOI:
    10.1016/j.ifacol.2017.08.1093
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Grushkovskaya;V. Grushkovskaya;Hans-Bernd Dürr;C. Ebenbauer;A. Zuyev;A. Zuyev
  • 通讯作者:
    V. Grushkovskaya;V. Grushkovskaya;Hans-Bernd Dürr;C. Ebenbauer;A. Zuyev;A. Zuyev
Extremum control of linear systems based on output feedback
基于输出反馈的线性系统极限控制
Gradient approximation and extremum seeking via needle variations
通过针变化进行梯度近似和极值搜索
A family of extremum seeking laws for a unicycle model with a moving target: theoretical and experimental studies
  • DOI:
    10.23919/ecc.2018.8550280
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Grushkovskaya;Simon Michalowsky;A. Zuyev;Max May;C. Ebenbauer
  • 通讯作者:
    V. Grushkovskaya;Simon Michalowsky;A. Zuyev;Max May;C. Ebenbauer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Christian Ebenbauer其他文献

Professor Dr.-Ing. Christian Ebenbauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Christian Ebenbauer', 18)}}的其他基金

Anytime algorithms for estimation-based model predictive control
基于估计的模型预测控制的随时算法
  • 批准号:
    399211811
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Novel Ways in Control and Computation: Predictive and Analog
控制和计算的新方法:预测和模拟
  • 批准号:
    80283926
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups

相似海外基金

STTR Phase I: Extremum Seeking Control of Wind Turbines and Wind Farms
STTR第一阶段:风力发电机和风电场的极值寻求控制
  • 批准号:
    2126855
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Time-Invariant, Multi-Objective Extremum Seeking Control for Model-Free Auto-Tuning of Powered Prosthetic Legs
用于动力假肢无模型自动调节的时不变、多目标极值搜索控制
  • 批准号:
    2040335
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Decentralized Adaptive and Extremum Seeking Control of Robot Manipulators Using Image Processing
协作研究:使用图像处理的机器人机械手的分散自适应和极值搜索控制
  • 批准号:
    1823951
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Decentralized Adaptive and Extremum Seeking Control of Robot Manipulators Using Image Processing
协作研究:使用图像处理的机器人机械手的分散自适应和极值搜索控制
  • 批准号:
    1823983
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Time-Invariant, Multi-Objective Extremum Seeking Control for Model-Free Auto-Tuning of Powered Prosthetic Legs
用于动力假肢无模型自动调节的时不变、多目标极值搜索控制
  • 批准号:
    1728057
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Extremum-seeking control for power consumption minimization in gas liquifiers
气体液化器功耗最小化的极值搜索控制
  • 批准号:
    470348-2014
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
Distributed extremum seeking control
分布式极值寻求控制
  • 批准号:
    467350-2014
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Extremum seeking control: a systematic design framework
极值寻求控制:系统设计框架
  • 批准号:
    DP120101144
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Modified Extremum Seeking Control and Its Application for Engine Power Train
改进的极值搜索控制及其在发动机动力系统中的应用
  • 批准号:
    23560539
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Real time optimisation by extremum seeking control and learning control
通过极值搜索控制和学习控制进行实时优化
  • 批准号:
    FT0991385
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了