Irregularity of algebraic differential equations on varieties in positive characteristic
正特征品种代数微分方程的不正则性
基本信息
- 批准号:274476424
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project proposal is concerned with systems of algebraic differential equations on smooth varieties X over a field of positive characteristic. Such systems are also called "stratified bundles''. The corresponding objects on complex manifolds are vector bundles with flat connection, but in positive characteristic new phenomena appear. In particular, the boundary behavior of a stratified bundle bears close resemblance to the ramification theory of l-adic local systems.The overall goal of this project is to further develop this analogy. In 2012, P. Deligne proved a finiteness theorem for irreducible l-adic local systems of fixed rank, with ramification bounded by a fixed divisor supported at infinity. The concrete goal of this proposal is to define and study the notion of a "stratified bundle with irregularity bounded by a divisor supported at infinity''. One successful outcome of the project would be to be able to formulate a statement about stratified bundles, which is analogous to Deligne's theorem.To achieve this, I first intend to assume that X is a curve and to study the structure of a stratified bundle formally locally around a point at infinity. Here I plan to construct an invariant measuring the quality of its singularity, which should be analogous to the irregularity number of a flat connection and the Swan conductor of an l-adic local system. If X has higher dimension, I plan to define the notion of bounded irregularity by probing X with curves.
本计画的建议是关于正特征域上光滑簇X上的代数微分方程组。此类系统也称为“分层束”。复流形上对应的对象是具有平坦联络的向量丛,但在正特征上出现了新的现象。特别是,分层丛的边界行为与l-adic局部系统的分歧理论有着密切的相似之处。本项目的总体目标是进一步发展这种类比。2012年,P. Deligne证明了一个固定秩的不可约l-adic局部系统的有限性定理,其中分支由一个支持在无穷远的固定因子所限制。这个建议的具体目标是定义和研究“一个分层丛的概念,不规则的边界上的一个除数支持在无穷大”。这个项目的一个成功的结果是能够制定一个关于分层丛的声明,这是类似于德利涅定理。为了实现这一点,我首先打算假设X是一条曲线,并研究一个分层丛的结构,正式当地围绕一个点在无穷远。在这里,我计划构建一个不变量测量其奇异性的质量,这应该是类似于不规则数的平面连接和天鹅导体的l-adic本地系统。 如果X有更高的维度,我计划通过用曲线探测X来定义有界不规则性的概念。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lefschetz theorems for tamely ramified coverings
驯服分支覆盖的 Lefschetz 定理
- DOI:10.1090/proc/13151
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Hélène Esnault;Lars Kindler
- 通讯作者:Lars Kindler
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Lars Kindler其他文献
Dr. Lars Kindler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
-- - 项目类别:
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
- 批准号:
23K03031 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
- 批准号:
EP/X032779/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Characterization of multivariate sigma-functions in terms of a system of partial differential equations obtained by Gauss-Manin connection
用通过高斯-马宁连接获得的偏微分方程组表征多元 sigma 函数
- 批准号:
23K03157 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10446127 - 财政年份:2022
- 资助金额:
-- - 项目类别:
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
- 批准号:
2139462 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10619001 - 财政年份:2022
- 资助金额:
-- - 项目类别:
AF: Small: Solving and Simplifying Algebraic, Differential, and Difference Equations.
AF:小:求解和简化代数方程、微分方程和差分方程。
- 批准号:
2007959 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant