Algebraic study of L functions of modular forms of several variables and differential operators

多变量模形式的L函数和微分算子的代数研究

基本信息

  • 批准号:
    23K03031
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

伊吹山 知義其他文献

Application of Modular Forms to Lattices
模形式在格中的应用
Quadratic mappings over(GO(p, q) , R^p+q) and functional Equations
(GO(p, q) , R^p q) 和函数方程的二次映射
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato
  • 通讯作者:
    Fumihiro Sato
局所密度の一次独立性とその保型形式の数論への応用
局域密度线性无关及其自守形式在数论中的应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子
  • 通讯作者:
    広中 由美子
On the functional equations of shpherical functions on certain spherical homogeneous space
关于某球齐次空间上球函数的泛函方程
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;Yumiko Hironaka;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;Yumiko Hironaka
  • 通讯作者:
    Yumiko Hironaka
二次写像による関数等式の遺伝と非概均質的関数等式
通过二次映射和非近似齐次函数方程继承函数方程
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広
  • 通讯作者:
    佐藤 文広

伊吹山 知義的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('伊吹山 知義', 18)}}的其他基金

Siegel modular forms and algebraic modular forms
西格尔模形式和代数模形式
  • 批准号:
    19K03424
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
中間ウェイトのジーゲル保型形式の研究
中等重量西格尔固定形式的研究
  • 批准号:
    18654003
  • 财政年份:
    2006
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
ベクトル値ジーゲル保型形式のなすテンソル環の研究
向量值Siegel模形式形成的张量环的研究
  • 批准号:
    14654007
  • 财政年份:
    2002
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
Koecher Maass級数と保型形式のリフティング
Koecher Maass 级数和自守形式的提升
  • 批准号:
    11874005
  • 财政年份:
    1999
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
一般ジーゲル公式とゼータ関数
一般西格尔公式和 zeta 函数
  • 批准号:
    09874007
  • 财政年份:
    1997
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
Maass Koecher Seriesの研究
Maass Koecher级数研究
  • 批准号:
    08874001
  • 财政年份:
    1996
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
ジョルダン代数のゼ-ヌ関数と保型形式の次元
Jordan 代数的 Zene 函数和自守形式的维数
  • 批准号:
    07210252
  • 财政年份:
    1995
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
保型形式とオイラー積の和としてのゼータ関数
Zeta 函数为自守形式与欧拉积之和
  • 批准号:
    07804002
  • 财政年份:
    1995
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
保型形式の次元公式
自守形式的维数公式
  • 批准号:
    06640042
  • 财政年份:
    1994
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
概均質ベクトル空間と保型形式
近似齐次向量空间和自同构形式
  • 批准号:
    05804002
  • 财政年份:
    1993
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

特異な多重線形擬微分作用素に関する研究
奇异多线性伪微分算子的研究
  • 批准号:
    23KJ1053
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
特異な多重線形擬微分作用素に対する有界性定理の精密化
奇异多线性伪微分算子有界定理的细化
  • 批准号:
    22KJ2109
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
絡微分作用素の解空間上に実現される表現の研究
纠缠微分算子解空间上实现的表示研究
  • 批准号:
    22K03362
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多重線形擬微分作用素の有界性に関する研究
多线性伪微分算子有界性研究
  • 批准号:
    20K14339
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
主要部が非線形微分作用素である高階非線形常微分方程式の解の構造の研究
以非线性微分算子为主体的高阶非线性常微分方程解的结构研究
  • 批准号:
    16740084
  • 财政年份:
    2004
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
劣微分作用素に対する非単調摂動理論とその物質科学への応用
次微分算子的非单调摄动理论及其在材料科学中的应用
  • 批准号:
    04F04050
  • 财政年份:
    2004
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
共形共変一階微分作用素の微分幾何学、大域解析学の視点からの研究
微分几何视角研究及共形协变一阶微分算子全局分析
  • 批准号:
    03J01252
  • 财政年份:
    2003
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ポアンカレ円板上のワイル型擬微分作用素とウィグナー変換
Weyl型伪微分算子与Poincaré盘上的Wigner变换
  • 批准号:
    13740118
  • 财政年份:
    2001
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
多様体上の微分作用素のなす空間の幾何学、コスティックスの特異点理論およびストルム理論
流形上微分算子形成的空间几何、Kostics的奇点理论和Strumm的理论
  • 批准号:
    00F00270
  • 财政年份:
    2000
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
係数が滑らかでない擬微分作用素と非線型分散型偏微分方程式
具有非光滑系数和非线性分布偏微分方程的伪微分算子
  • 批准号:
    12740086
  • 财政年份:
    2000
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了