Measurement-Based Spatial Dependence of Aquifer Parameters: Modelling and Impact Assessment

基于测量的含水层参数的空间依赖性:建模和影响评估

基本信息

项目摘要

Geostatistical models and techniques such as Kriging exploit spatial dependence as expressed by correlations to evaluate natural resources, help optimize their development, and address environmental issues related for example to air and water quality, soil pollution, and forestry.Spatial heterogeneity of natural occurring variables leads to problems when numerically modelling environmental systems. Observations can be made only at selected locations or are available only indirectly on a larger scale. Hence, assumptions about the not measured values are necessary, both for the modelling and the estimation of system states. Geostatistical tools offer reasonable solutions for this problem. Spatial copulae are one of very few existing approaches that are based on real field measurements and go beyond pairwise dependence. By employing spatial copulae, it is possible to fit a multidimensional model of spatial dependence to the structure observed in the data. Usually, the fit is drastically improved compared to models using pairwise symmetric dependence.The goal of the proposed work is to improve and expand existing copula models, demonstrate their necessity when dealing with heterogeneous variables, and take non-Gaussian dependence for inversion into account. The improved models will take censored measurements into account. Censored measurements, such as measurements below some detection limit, will be fully considered for simulating spatially distributed fields. Indirect measurements (of hydraulic head) are often more comprehensively available than the variable of interest (hydraulic conductivity). The proposed work will use the improved geostatistical model, to honour the spatial structure of observations during the inversion process, even if it may be non-Gaussian.The relevance of this work will be demonstrated with a numerical groundwater flow and solute transport model of a very heterogeneous field site where the spreading of a solute plume has been observed in great detail; at the same time, hydraulic conductivity at the site has been measured comprehensively. For a justification of the advancement in geostatistical approaches, it needs to be shown these advances in the geostatistical model of a spatially distributed variable (hydraulic conductivity) lead to improvement of the prediction of some dependent variable (solute concentration). An improved prediction of solute transport behaviour based on an improved model of spatial dependence could have far-reaching consequences for source water protection and management of polluted sites. The models could be applied outside the realm of hydrogeology (e.g., air pollution, atmospheric sciences, or mining) to any spatially distributed variable.
地质统计学模型和技术,如克里格法,利用空间相关性来评估自然资源,帮助优化其开发,并解决与空气和水质量、土壤污染和林业等相关的环境问题。自然变量的空间异质性在对环境系统进行数值建模时会导致问题。只能在选定的地点进行观测,或者只能在较大的尺度上间接进行观测。因此,对于系统状态的建模和估计,关于未测量值的假设是必要的。地质统计学工具为这一问题提供了合理的解决方案。空间copulae是现有的方法之一,是基于真实的现场测量和超越成对的依赖。通过使用空间连接,可以将空间依赖的多维模型拟合到数据中观察到的结构。本文的目标是改进和扩展现有的Copula模型,证明其在处理异质变量时的必要性,并考虑非高斯依赖性进行反演。改进后的模型将考虑删失测量。删失的测量,如测量低于一定的检测限,将充分考虑模拟空间分布的领域。间接测量(水头)通常比感兴趣的变量(水力传导率)更全面。拟议的工作将使用改进的地质统计模型,以尊重反演过程中观测的空间结构,即使它可能是非高斯的,这项工作的相关性将通过一个非常不均匀的实地的地下水流和溶质运移的数值模型来证明,在那里已经非常详细地观察到溶质羽流的扩散;同时,对现场的导水率进行了全面测定。为了证明地质统计学方法的进步,需要证明空间分布变量(导水率)的地质统计学模型的这些进步导致某些因变量(溶质浓度)预测的改善。改进的预测溶质运移行为的基础上改进的模型的空间依赖性可能会产生深远的影响水源保护和污染场地的管理。这些模型可以应用于水文地质学领域之外(例如,空气污染、大气科学或采矿)到任何空间分布变量。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields
根据非均相电导率场统计直接预测突破曲线
  • DOI:
    10.1002/2017wr020450
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    S. K. Hansen;C. P. Haslauer;O. A. Cirpka;V. V. Vesselinov
  • 通讯作者:
    V. V. Vesselinov
The impact of sedimentary anisotropy on solute mixing in stacked scour‐pool structures
  • DOI:
    10.1002/2016wr019665
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    J. Bennett;C. Haslauer;O. Cirpka
  • 通讯作者:
    J. Bennett;C. Haslauer;O. Cirpka
Including land use information for the spatial estimation of groundwater quality parameters – 1. Local estimation based on neighbourhood composition
纳入土地利用信息,用于地下水质量参数的空间估算 â 1 基于邻域构成的局部估算
  • DOI:
    10.1016/j.jhydrol.2015.12.049
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    T. Heisserer;C. P. Haslauer;A. Bárdossy
  • 通讯作者:
    A. Bárdossy
Including land use information for the spatial estimation of groundwater quality parameters – 2. Interpolation methods, results, and comparison
包括土地利用信息用于地下水质量参数的空间估算 â 2 插值方法、结果和比较
  • DOI:
    10.1016/j.jhydrol.2016.01.054
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    C. P. Haslauer;T. Heisserer;A. Bárdossy
  • 通讯作者:
    A. Bárdossy
Detecting and modelling structures on the micro and the macro scales: Assessing their effects on solute transport behaviour
  • DOI:
    10.1016/j.advwatres.2017.05.007
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    C. Haslauer;A. Bárdossy;E. Sudicky
  • 通讯作者:
    C. Haslauer;A. Bárdossy;E. Sudicky
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Claus Haslauer其他文献

Dr.-Ing. Claus Haslauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: Continental-scale, high-order, high-spatial-resolution, ice flow modeling based on graphics processing units (GPUs)
RII Track-4:NSF:基于图形处理单元 (GPU) 的大陆尺度、高阶、高空间分辨率冰流建模
  • 批准号:
    2327095
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
  • 批准号:
    2335927
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
  • 批准号:
    23K16920
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spatial Econometric Analysis on regional economies and decentralization in Indonesia based on legal mapping method and satellite night time light data
基于法定制图方法和卫星夜间灯光数据的印度尼西亚区域经济与权力下放空间计量分析
  • 批准号:
    23H03617
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Early detection and risk of head and neck cancer through immune based spatial omics
通过基于免疫的空间组学早期发现头颈癌并降低风险
  • 批准号:
    10766467
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SCH: Graph-based Spatial Transcriptomics Computational Methods in Kidney Diseases
SCH:肾脏疾病中基于图的空间转录组学计算方法
  • 批准号:
    10816929
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Estimation of Crime Risk Areas on Spatial Autocorrelation Analysis based on Situational Crime Prevention Approach
基于情景犯罪预防方法的空间自相关分析犯罪风险区域估计
  • 批准号:
    23K04068
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of the method for biological tissue domain estimation and analysis based on spatial omics data
基于空间组学数据的生物组织域估计与分析方法的建立
  • 批准号:
    23K11303
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatial Explanation and Planning for Resilience of Community-Based Small Businesses to Environmental Shocks
基于社区的小型企业对环境冲击的抵御能力的空间解释和规划
  • 批准号:
    2316450
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spatial Knowledge Acquisition by Robot Question Generation Based on Active Inference
基于主动推理的机器人问题生成空间知识获取
  • 批准号:
    23K16975
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了