Organic Computing Techniques for Run-Time Self-Adaptation of Ubiquitous, Multi-Modal Activity Recognition Systems

用于普遍存在的多模态活动识别系统运行时自适应的有机计算技术

基本信息

项目摘要

Ubiquitous activity and context recognition (AR) aims at translating information provided by simple sensors into high level knowledge about human activities and the situation in the environment. Over the last decade researchers have shown the principle feasibility of recognizing activities and situations ranging from the steps of a maintenance task, through every day activities at home, to sport and social interactions. A major limitation of today's state of the art approaches is that they mostly assume system configurations exactly defined at the system's design-time that remain fixed at run-time. Thus, for each application, the user needs to place specific sensors at certain well-defined locations in the environment and on his body. All stages of the signal processing chain (from signal conditioning through feature selection to classification) are then custom-designed for the concrete configuration and task. While such static runtime setups can be guaranteed under controlled laboratory conditions, the possibility of sensors dropping out and new sensors appearing must be taken into account in real world settings. In this proposal we will develop new Organic Computing (OC) techniques to facilitate self-healing (when a sensor drops out) and self-improvement (when a new sensor appears) for ubiquitous activity and context recognition systems. Specifically, we will develop a layered Observer/Controller architecture where the System under Observation and Control (SuOC) is (are) human(s) in an intelligent, sensor enabled environment. The bottom layer (reaction layer) can be seen as a blueprint of standard AR based context sensitive systems. The adaptation layer enables the system to improve autonomously -- or semi-autonomously with sporadic human feedback -- the classifier at the reaction layer using the new sensor information or to adapt it a sensor drops out. In general, autonomous adaptation methods cannot guarantee to always lead to an improvement and, in special cases, they can even result in performance degradation. Thus, the potential gains and the risks of a possible adaptation are estimated and considered not only at the adaptation layer, but also at the reflection layer (top layer) that models the long term system evolution to ensure that continuous modifications of the system configuration lead to long term improvement and not to un-bounded performance degradation of the overall system. In our approach we develop new OC techniques for AR by combining and extending methods from Machine Leaning, Pattern Recognition, and related fields (in particular generative and discriminative modeling, semi-supervised learning, active learning, and nonlinear dynamic systems theory). We will evaluate our methods on existing large scale AR data sets.
泛在活动和上下文识别(AR)旨在将简单传感器提供的信息转换为有关人类活动和环境状况的高级知识。在过去的十年中,研究人员已经证明了识别活动和情况的原则可行性,从维护任务的步骤,到日常活动,再到体育和社会互动。当今最先进的方法的一个主要限制是,它们大多假设在系统的设计时精确定义的系统配置在运行时保持固定。因此,对于每个应用程序,用户需要将特定的传感器放置在环境中和身体上的某些明确定义的位置。信号处理链的所有阶段(从信号调理到特征选择再到分类)都是针对具体配置和任务定制设计的。虽然在受控的实验室条件下可以保证这种静态运行时间设置,但在真实的世界设置中必须考虑传感器退出和新传感器出现的可能性。在这项提案中,我们将开发新的有机计算(OC)技术,以促进无处不在的活动和上下文识别系统的自我修复(当传感器退出)和自我改进(当一个新的传感器出现)。具体来说,我们将开发一个分层的观察者/控制器架构,其中观察和控制下的系统(SuOC)是(是)人(S)在一个智能的,传感器启用的环境。底层(反应层)可以被视为基于标准AR的上下文敏感系统的蓝图。自适应层使系统能够自主地-或半自主地与零星的人类反馈-使用新的传感器信息的反应层的分类器或适应它的传感器退出。一般来说,自主自适应方法不能保证总是导致改进,在特殊情况下,它们甚至可能导致性能下降。因此,不仅在适应层而且在对长期系统演进进行建模的反射层(顶层)处估计和考虑可能的适应的潜在增益和风险,以确保系统配置的连续修改导致长期改进而不是整个系统的无限性能退化。在我们的方法中,我们通过结合和扩展机器学习,模式识别和相关领域(特别是生成和判别建模,半监督学习,主动学习和非线性动态系统理论)的方法,开发了新的OC技术。我们将在现有的大规模AR数据集上评估我们的方法。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Self-Improving Activity Recognition Systems Based on Probabilistic, Generative Models
基于概率生成模型的自我改进活动识别系统
Hijacked Smart Devices - Methodical Foundations for Autonomous Theft Awareness based on Activity Recognition and Novelty Detection
  • DOI:
    10.5220/0006594901310142
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Martin Jänicke;V. Schmidt;B. Sick;Sven Tomforde;P. Lukowicz
  • 通讯作者:
    Martin Jänicke;V. Schmidt;B. Sick;Sven Tomforde;P. Lukowicz
Self-Adaptive Multi-Sensor Activity Recognition Systems Based on Gaussian Mixture Models
  • DOI:
    10.3390/informatics5030038
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Jänicke;B. Sick;Sven Tomforde
  • 通讯作者:
    Martin Jänicke;B. Sick;Sven Tomforde
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Paul Lukowicz其他文献

Professor Dr. Paul Lukowicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Paul Lukowicz', 18)}}的其他基金

Methods for Activity Spotting With On-Body Sensors
使用身体传感器进行活动检测的方法
  • 批准号:
    101885733
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: High Performance Computing (HPC) Tools, Techniques, and Research across the Physical Sciences
REU 网站:跨物理科学领域的高性能计算 (HPC) 工具、技术和研究
  • 批准号:
    2348782
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing valuable operational healthcare applications using quantum computing techniques
使用量子计算技术开发有价值的运营医疗保健应用程序
  • 批准号:
    10072653
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
SBIR Phase I: Hybrid Computing Techniques for Quantum-inspired Ising Machines
SBIR 第一阶段:受量子启发的 Ising 机器的混合计算技术
  • 批准号:
    2233642
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modeling the cocktail party effect using reservoir computing and non-invasive techniques and its potential applications in brain-computer interfaces and assistive technologies
使用储层计算和非侵入性技术模拟鸡尾酒会效应及其在脑机接口和辅助技术中的潜在应用
  • 批准号:
    557934-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Modeling the cocktail party effect using reservoir computing and non-invasive techniques and its potential applications in brain-computer interfaces and assistive technologies
使用储层计算和非侵入性技术模拟鸡尾酒会效应及其在脑机接口和辅助技术中的潜在应用
  • 批准号:
    557934-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
CIF: Small: Leveraging Coding Techniques for Distributed Computing
CIF:小型:利用编码技术进行分布式计算
  • 批准号:
    1910840
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
An exploration and evaluation of the application of deep learning techniques to high dimensional data in biology, astrophysics, and adversarial knowledge discovery, using high performance computing.
使用高性能计算探索和评估深度学习技术在生物学、天体物理学和对抗性知识发现中高维数据的应用。
  • 批准号:
    490234-2016
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CSR: Small: Ultra-Low Power Analog Computing and Dry Skin-Electrode Contact Interface Design Techniques for Systems-On-A-Chip with EEG Sensing and Feature Extraction
CSR:小型:具有 EEG 传感和特征提取功能的片上系统的超低功耗模拟计算和干皮肤电极接触接口设计技术
  • 批准号:
    1812588
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
COUNTER: Computing train Occupants Using Novel sensing Techniques to Enhance Rail services.
柜台:使用新颖的传感技术计算列车乘客的数量,以增强铁路服务。
  • 批准号:
    133501
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了