CSR: Small: Ultra-Low Power Analog Computing and Dry Skin-Electrode Contact Interface Design Techniques for Systems-On-A-Chip with EEG Sensing and Feature Extraction
CSR:小型:具有 EEG 传感和特征提取功能的片上系统的超低功耗模拟计算和干皮肤电极接触接口设计技术
基本信息
- 批准号:1812588
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electroencephalography (EEG) is used for the analysis of many neurological disorders such as epilepsy, sleep disorders, encephalopathy, and coma. Perpetual monitoring and processing of EEG signals helps the treatment inside and outside of the hospital environment. However, the power consumption involved in signal acquisition, processing, and communication has remained high for wearable wireless EEG devices. This research will develop an ultra-low power (ULP) EEG acquisition and processing system-on-a-chip (SoC) using a new analog computing technique instead of conventional digital processing system. This SoC will be able to identify a seizure event in the analog domain, incorporating learning and continuous signal processing.The analog processing and feature extraction capability will be realized with precise amplifier and filter design techniques to achieve stabilities down to 10s of parts-per-million (ppm)/degree for gains and filter cutoff frequencies. The feature extraction method will measure the power levels in various EEG spectral bands by utilizing these precise analog amplifiers and filters to detect the onset of seizures. Power level threshold setting and simple vector model based training methods will be implemented on-chip for seizure characterization and detection. A capacitance cancellation scheme with online calibration will be devised to acquire EEG signals with higher input impedance for brain-computer interfaces requiring long-term monitoring. The results from this research will improve the acquisition of EEG signals for predicting the onset of seizures with small portable devices, which impacts 2% of the world's population. The proposed SoC will be particularly beneficial in future miniaturized wearable devices for continuous EEG signal monitoring outside of hospital environments. Knowledge obtained from this project will be integrated into graduate and undergraduate education; results from the project will be disseminated through journal articles and conference presentations. Undergraduate researchers and high school interns will be involved and trained in the project. Publicly shared data collected as part of this research will be deposited into Northeastern University's Digital Repository Service (DRS), which is a digital archive developed and maintained by the library (https://repository.library.northeastern.edu). It provides security for the files it stores, as well as access management controls and support for various metadata standards to help ensure that data is as accessible and usable in the present and the future. All project participants will have access to a project management database stored on local servers with design and simulation data. The project data will be maintained for at least 3 years after the conclusion of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脑电图(EEG)用于分析许多神经系统疾病,如癫痫、睡眠障碍、脑病和昏迷。EEG信号的永久监测和处理有助于医院环境内外的治疗。然而,对于可穿戴无线EEG设备,信号采集、处理和通信中涉及的功耗仍然很高。本研究将开发一个超低功耗脑电采集与处理系统芯片,采用一种新的模拟计算技术代替传统的数字处理系统。该SoC将能够识别模拟域中的癫痫发作事件,结合学习和连续信号处理。模拟处理和特征提取能力将通过精确的放大器和滤波器设计技术实现,以实现增益和滤波器截止频率的稳定性低至10秒/百万分之一(ppm)/度。特征提取方法将通过利用这些精确的模拟放大器和滤波器来测量各种EEG谱带中的功率水平,以检测癫痫发作。功率电平阈值设置和基于简单矢量模型的训练方法将在片内实现,用于癫痫发作表征和检测。将设计具有在线校准的电容消除方案,以获取需要长期监测的脑机接口的具有较高输入阻抗的EEG信号。这项研究的结果将改善EEG信号的采集,用于预测小型便携式设备的癫痫发作,这影响了世界2%的人口。所提出的SoC将特别有益于未来的小型化可穿戴设备,用于医院环境之外的连续EEG信号监测。从该项目获得的知识将被纳入研究生和本科生教育;该项目的成果将通过期刊文章和会议介绍传播。本科研究人员和高中实习生将参与该项目并接受培训。 作为本研究的一部分收集的公开共享数据将存入东北大学的数字存储库服务(DRS),这是一个由图书馆开发和维护的数字档案(https:repository.library.northeastern.edu)。它为它存储的文件提供安全性,以及访问管理控制和对各种元数据标准的支持,以帮助确保数据在现在和将来都可以访问和使用。所有项目参与者都可以访问存储在本地服务器上的项目管理数据库,其中包含设计和模拟数据。项目数据将在项目结束后保留至少3年。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Chopper Instrumentation Amplifier with Fully Symmetric Negative Capacitance Generation Feedback Loop and Online Digital Calibration for Input Impedance Boosting
具有全对称负电容生成反馈环路和用于输入阻抗提升的在线数字校准的斩波仪表放大器
- DOI:10.1109/mwscas.2019.8884858
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Abdelfattah, Safaa;Shrivastava, Aatmesh;Onabajo, Marvin
- 通讯作者:Onabajo, Marvin
RSSI Amplifier Design for a Feature Extraction Technique to Detect Seizures with Analog Computing
用于通过模拟计算检测癫痫发作的特征提取技术的 RSSI 放大器设计
- DOI:10.1109/iscas45731.2020.9180802
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Zhang, Yuqing;Mirchandani, Nikita;Onabajo, Marvin;Shrivastava, Aatmesh
- 通讯作者:Shrivastava, Aatmesh
An Ultra-Low Power RSSI Amplifier for EEG Feature Extraction to Detect Seizures
用于提取脑电图特征以检测癫痫发作的超低功耗 RSSI 放大器
- DOI:10.1109/tcsii.2021.3099056
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Yuqing;Mirchandani, Nikita;Abdelfattah, Safaa;Onabajo, Marvin;Shrivastava, Aatmesh
- 通讯作者:Shrivastava, Aatmesh
Modeling and Simulation of Circuit-Level Nonidealities for an Analog Computing Design Approach With Application to EEG Feature Extraction
- DOI:10.1109/tcad.2022.3170248
- 发表时间:2023-01
- 期刊:
- 影响因子:2.9
- 作者:Nikita Mirchandani;Yuqing Zhang;Safaa A. Abdelfattah;M. Onabajo;A. Shrivastava
- 通讯作者:Nikita Mirchandani;Yuqing Zhang;Safaa A. Abdelfattah;M. Onabajo;A. Shrivastava
A High Efficiency DC-DC Converter Architecture with Adjustable Switching Frequency to Suppress Noise Injection in RF Receiver Front-Ends
具有可调节开关频率的高效 DC-DC 转换器架构,可抑制 RF 接收器前端中的噪声注入
- DOI:10.1109/iscas45731.2020.9181202
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Xu, Ziyue;Mirchandani, Nikita;Ibrahim, Mahmoud A.;Onabajo, Marvin;Shrivastava, Aatmesh
- 通讯作者:Shrivastava, Aatmesh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aatmesh Shrivastava其他文献
Aatmesh Shrivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aatmesh Shrivastava', 18)}}的其他基金
High Efficiency Distributed Beamforming RF Energy Transfer using a Closed-loop Energy Receiver
使用闭环能量接收器进行高效分布式波束成形射频能量传输
- 批准号:
2225368 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: An Ultra-low Power Analog Computing Hardware Design Framework for Machine Learning Inference in Edge Biomedical Devices
职业:用于边缘生物医学设备中机器学习推理的超低功耗模拟计算硬件设计框架
- 批准号:
2144703 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Energy and Activity Analysis based On-chip methods for Mitigating Denial-of-Sleep Attacks in Ultra-low Power IoT Devices
基于能量和活动分析的片上方法,用于减轻超低功耗物联网设备中的拒绝睡眠攻击
- 批准号:
2125222 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
- 批准号:
10591304 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Determining the impact of ultra-small SIV reservoirs on sustained ART-free remission
确定超小型 SIV 储库对持续无 ART 缓解的影响
- 批准号:
10762606 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Determining the impact of ultra-small SIV reservoirs on sustained ART-free remission
确定超小型 SIV 储库对持续无 ART 缓解的影响
- 批准号:
10792978 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Development of catalytic reactions over novel supported ultra-small cluster catalysts and contribution to CO2 emission reduction
新型负载型超小簇催化剂催化反应的发展及其对二氧化碳减排的贡献
- 批准号:
23K04772 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of spin-echo SANS method for fast measurement of ultra-small-angle neutron scattering information
超小角中子散射信息快速测量自旋回波SANS方法的发展
- 批准号:
23K11708 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel ultra-short cell free DNA biomarkers for early detection of non-small cell lung cancer.
用于早期检测非小细胞肺癌的新型超短无细胞 DNA 生物标志物。
- 批准号:
10730508 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Ultra Small-Angle X-ray Diffractometer
超小角度X射线衍射仪
- 批准号:
504929269 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Major Research Instrumentation
Near Infrared-to-Blue Triplet-Fusion Upconversion using Surface-Functionalized Ultra-Small PbS Quantum Dots as the Triplet-Sensitizer Species
使用表面功能化超小 PbS 量子点作为三重态敏化剂的近红外到蓝色三重态融合上转换
- 批准号:
559217-2021 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Ultra-small sparse matrix serial computation mechanism with memory transpose
带内存转置的超小型稀疏矩阵串行计算机制
- 批准号:
22K19775 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Discover of unknown ultra-small marine bacrteria
发现未知的超小型海洋细菌
- 批准号:
22K19210 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)