Phase Diagram of Graphene from Lattice Field Theory

晶格场论的石墨烯相图

基本信息

项目摘要

This project exploits analogies between the electronic properties of graphene and strongly coupled quantum field theories, most importantly quantum chromodynamics (QCD), to address some of the outstanding questions in relation to many-body strong-coupling effects which can nowadays increasingly well be studied experimentally in high quality samples of graphene. Ab-initio Monte-Carlo simulations based on our state-of-the-art tools from lattice field theory are used tosystematically explore the phase structure of graphene in the presence of external influences which favor various ordered phases. Dyson-Schwinger equations on the graphene lattice complement these ab-initio calculations, e.g., for pseudo-conformal behavior in very large volumes or finite charge-carrier densities where there is a fermion-sign problem as in QCD at finite baryon density. In particular, the project aims to determine which of the various Mott insulating phases occur inthe various regions of tunable parameters and whether they can be realized experimentally. It thereby addresses magnetic fields and magnetic catalysis as also relevant in heavy-ion collisions, defects as catalysts for pre-condensation and their analogies with instantons, the finite-density Lifshitz transition, and the relation between Anderson localization and chiral symmetry breaking as in hot QCD. The goal is to identify how graphene can best be used to test such non-perturbative quantum field theory concepts as also relevant for studies of the QCD phase diagram under well controllable experimental conditions.
该项目利用石墨烯的电子性质与强耦合量子场论(最重要的是量子色动力学(QCD))之间的类比,来解决与多体强耦合效应相关的一些悬而未决的问题,这些问题如今可以越来越好地进行实验研究在高质量的石墨烯样品中。 基于我们最先进的晶格场理论工具,采用从头算蒙特-卡罗模拟方法,系统地研究了石墨烯在各种有序相存在下的相结构.石墨烯晶格上的Dyson-Schwinger方程补充了这些从头计算,例如,对于在非常大的体积或有限的电荷载流子密度中的伪共形行为,其中存在有限重子密度下的QCD中的费米子符号问题。特别是,该项目的目的是确定哪些各种莫特绝缘阶段发生在可调参数的各个区域,以及它们是否可以通过实验实现。因此,它解决磁场和磁催化也相关的重离子碰撞,缺陷作为催化剂的预凝聚和他们的类比与瞬子,有限密度Lifshitz过渡,和安德森本地化和手征对称性破缺之间的关系,在热QCD。我们的目标是确定如何最好地使用石墨烯来测试这种非微扰量子场论概念,也相关的QCD相图在可控的实验条件下的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Pavel Buividovich, Ph.D.其他文献

Dr. Pavel Buividovich, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Pavel Buividovich, Ph.D.', 18)}}的其他基金

Numerical methods for transport and thermodynamic properties of dense and chiral QCD matter
致密手性 QCD 物质的输运和热力学性质的数值方法
  • 批准号:
    405943556
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships

相似海外基金

有限群由来の Diagram 代数の既約表現の構成
从有限群导出的图代数的不可约表示的构造
  • 批准号:
    24K06644
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: White Dwarfs in Binaries Across the H-R Diagram with the APOGEE-GALEX-Gaia Catalog
合作研究:使用 APOGEE-GALEX-Gaia 目录在 H-R 图上的双星中的白矮星
  • 批准号:
    2307865
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Categorical centers, cactus actions, and diagram algebras
分类中心、仙人掌动作和图代数
  • 批准号:
    2302664
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Re-envisioning alt text for education through concurrent authoring and diagram design
SBIR 第一阶段:通过并行创作和图表设计重新构想教育替代文本
  • 批准号:
    2221722
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Artin groups and diagram algebras via topology
通过拓扑的 Artin 群和图代数
  • 批准号:
    EP/V043323/2
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Collaborative Research: White Dwarfs in Binaries Across the H-R Diagram with the APOGEE-GALEX-Gaia Catalog
合作研究:使用 APOGEE-GALEX-Gaia 目录在 H-R 图上的双星中的白矮星
  • 批准号:
    2307863
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: White Dwarfs in Binaries Across the H-R Diagram with the APOGEE-GALEX-Gaia Catalog
合作研究:使用 APOGEE-GALEX-Gaia 目录在 H-R 图上的双星中的白矮星
  • 批准号:
    2307862
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing a Novel Data-driven Modelling Strategy for Process Flow Diagram Optimisation
开发用于流程图优化的新型数据驱动建模策略
  • 批准号:
    2903759
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Kondo-Zhang-Rice phase diagram: A new paradigm for multiple cation-ordered perovskite oxides
Kondo-Zhang-Rice 相图:多种阳离子有序钙钛矿氧化物的新范例
  • 批准号:
    23K03324
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: White Dwarfs in Binaries Across the H-R Diagram with the APOGEE-GALEX-Gaia Catalog
合作研究:使用 APOGEE-GALEX-Gaia 目录在 H-R 图上的双星中的白矮星
  • 批准号:
    2307864
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了