Semiclassical Wigner approach to quantum effects in vibrational spectroscopy
振动光谱中量子效应的半经典维格纳方法
基本信息
- 批准号:277318087
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapid progress of the laser facilities and measuring techniques has made the vibrational spectroscopy an ubiquitous tool to probe dynamics of complex many-body systems. The measured spectra can yield an extremely accurate dynamical information on the atomistic level if supplemented by a theoretical simulation, that reveals the underlying microscopic mechanisms. Thus the demand to have theoretical methods that can cope with explaining such spectra and thus unravelling intricate phenomena in condensed phase becomes apparent. The Wigner function constitutes a one-to-one representation of the quantum mechanical density operator, including coherences. The state-of-the-art methods based on linear semiclassical initial value representation readily reproduce static quantum effects already present in the initial state, whereas truly dynamical quantum effects that arise during the time evolution in the presence of nonlinear potentials remain outside reach. Major progress could be achieved through the insight that even quantum coherences can be time-evolved faithfully if the propagation is not based on single but on pairs of classical trajectories. This allows one to construct a truly semiclassical Wigner propagator in closed form that includes quantum corrections of the phase up to fourth-order terms in the potential. It has proven itself as a powerful tool already in analyzing quantum spectra of classically chaotic systems in terms of time-dependent phase-space structures and has been applied successfully to numerical propagation tasks and linear time-correlation functions in the framework of a grid-based methodology. Here, we attempt to make an important step ahead by recasting the successful grid-based formulation, which is well-suited for low-dimensional problems, into a grid-free representation where all relevant dynamical quantities are evaluated directly as averages over trajectory ensembles. This requires to recast the formalism accordingly, which has been mostly achieved during the preliminary work stage. The main goal of this project is thus to achieve the proof-of-concept for the proposed methodology applied to realistic molecular systems with many degrees of freedom. We propose to start from linear spectroscopy of model low-dimensional systems and to gradually increase their complexity, systematically solving all emerging methodological problems. Finally, the concept will be tested on chemically relevant molecules. The non-linear spectroscopy as well as the extension for the ab initio molecular dynamics framework treating the surrounding either by means of a QM/MM or realistic system-bath partitioning is foreseen.
激光装置和测量技术的迅速发展使振动光谱学成为研究复杂多体系统动力学的普遍工具。测量的光谱可以产生一个非常准确的动力学信息的原子水平上,如果辅以理论模拟,揭示了潜在的微观机制。因此,需要有理论方法,可以科普解释这样的光谱,从而解开复杂的现象,在凝聚相变得明显。维格纳函数构成了量子力学密度算符的一对一表示,包括相干性。基于线性半经典初始值表示的最新方法很容易再现初始状态中已经存在的静态量子效应,而在非线性势存在下在时间演化过程中出现的真正动态量子效应仍然无法实现。如果传播不是基于单一的而是基于成对的经典轨迹,那么即使是量子相干也可以忠实地时间演化,这一认识可以取得重大进展。这使得人们可以构造一个真正的半经典维格纳传播子在封闭的形式,包括量子校正的相位高达四阶项的潜力。它已被证明是一个强大的工具,已经在分析经典混沌系统的量子谱的时间相关的相空间结构,并已成功地应用于数值传播任务和线性时间相关函数的框架内的网格为基础的方法。在这里,我们试图通过重铸成功的基于网格的配方,这是非常适合于低维问题,到一个无网格的表示,所有相关的动力学量直接评估为平均轨迹合奏向前迈出了重要的一步。这就需要相应地改变形式主义,这在初步工作阶段已经基本实现。因此,该项目的主要目标是实现所提出的方法应用于具有多个自由度的现实分子系统的概念验证。我们建议从模型低维系统的线性光谱开始,并逐渐增加其复杂性,系统地解决所有新出现的方法问题。最后,这个概念将在化学相关分子上进行测试。的非线性光谱以及扩展的从头算分子动力学框架治疗周围无论是通过QM/MM或现实的系统浴分区预见。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Sergey Ivanov其他文献
Dr. Sergey Ivanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
半有限von Neumann代数中投影集上的Wigner定理
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模非高斯量子态及其 Wigner负性和量子关联研究
- 批准号:
- 批准年份:2024
- 资助金额:31 万元
- 项目类别:地区科学基金项目
六维相空间的Wigner-Boltzmann方程的高效随机粒子算法
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
离散Wigner函数及其在量子信息领域的应用
- 批准号:61941501
- 批准年份:2019
- 资助金额:12 万元
- 项目类别:专项基金项目
基于Wigner分布参数化表示的光场成像理论与方法研究
- 批准号:61801031
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
多体量子系统中的Wigner定理、积态强正线性映射及相关问题的研究
- 批准号:11701075
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
非平衡Green函数法和Wigner分布函数法在量子输运中的应用
- 批准号:11671038
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
具有非紧间断势的Wigner输运方程的数值模拟
- 批准号:91230107
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:重大研究计划
基于分数傅立叶变换与Wigner分布的纹理分割技术研究
- 批准号:61003128
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227459 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Simulations of hydrogen gas dynamics in hydrogen clathrate cages using the Wigner equation
使用维格纳方程模拟氢笼中的氢气动力学
- 批准号:
573533-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
SIMULATING QUANTUM CIRCUITS---UNDERSTANDING THE ROLES OF WIGNER NEGATIVITY, SYMMETRY, AND SYMMETRY BREAKING
模拟量子电路——理解维格纳负性、对称性和对称性破缺的作用
- 批准号:
576145-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Generalized Wigner quasi-probability distribution function and its application to various quantum systems
广义维格纳拟概率分布函数及其在各种量子系统中的应用
- 批准号:
17K05569 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER:Quantifying Radiation Damage in Metals with Wigner Energy Spectral Fingerprints
职业:利用维格纳能谱指纹量化金属的辐射损伤
- 批准号:
1654548 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Spectre RMN des cristaux de Wigner dans le graphène
维格纳之克里斯托斯幽灵 RMN dans le graphène
- 批准号:
502160-2016 - 财政年份:2016
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Generation of negative Wigner function light using using exciton-polariton condensates
使用激子-极化子凝聚体产生负维格纳函数光
- 批准号:
26790061 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research: Search for the Zero-Magnetic-Field Wigner Solid
合作研究:寻找零磁场维格纳固体
- 批准号:
1309008 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Search for the Zero-Magnetic-Field Wigner Solid
合作研究:寻找零磁场维格纳固体
- 批准号:
1309337 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




