Development of optimum bandgap photoanodes for tandem water-splitting cells based on doped complex metal oxides and III-V semiconductors coupled to water oxidation electrocatalysts

基于掺杂复合金属氧化物和 III-V 半导体与水氧化电催化剂耦合的串联水分解电池的最佳带隙光电阳极的开发

基本信息

  • 批准号:
    279020913
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2015
  • 资助国家:
    德国
  • 起止时间:
    2014-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

One of the most promising approaches for the development of highly efficient solar water-splitting systems is the use of photoelectrochemical devices comprising of a tandem of photocathodes and photoanodes with optimized optical (bandgap), photoelectrochemical (quasi-Fermi levels, current matching), and surface catalytic properties. For example, such tandem cells could provide solar-to-hydrogen efficiencies of around 25% when using two absorbers with bandgaps of 1.1 eV and 1.8 eV. While highly efficient low-bandgap photocathodes based on crystalline silicon (1.1 eV) are available, a major challenge in bridging the gap to working devices is the development of efficient and stable photoanodes with well-matched characteristics: bandgap of 1.8 eV, and photocurrent maximum at potentials as low as 0.4 V vs. RHE (i.e., photocurrent onset at ca. 0.2 V vs. RHE). However, there are currently no materials fulfilling such criteria, and new materials must be developed. In addressing this challenge, this collaborative project aims to investigate two novel and distinct types of photoanodes based on two different classes of light absorbers, selected as highly promising on the basis of rational considerations and theoretical (DFT) calculations: i) doped copper tungstates, and ii) antimony-doped gallium nitride. High degree of control over the composition, structure, morphology, and crystallinity is crucial for efficient light harvesting and charge separation. Therefore, thin films with various morphologies (porous, compact, epitaxial layers, nanopillars) will be prepared by sol-gel and metalorganic chemical vapor deposition (MOCVD) techniques. In order to ensure fast kinetics of water oxidation, thin layers of highly efficient amorphous electrocatalysts for oxygen evolution will be deposited by atomic layer deposition and by inherently low temperature methods (electrochemical, photoelectrochemical, and photochemical metalorganic deposition) in order to avoid formation of defects by thermally activated interlayer atomic diffusion.Detailed mechanistic investigations will be employed to identify the bottlenecks in photoelectrochemical performance of photoanodes. A time-resolved terahertz photoconductivity probe and photo-induced transient absorption spectroscopy will be used to study the charge transport properties and recombination dynamics. These investigations will drive the rational design of the photoanodes and are expected to provide unique knowledge on the charge dynamics in different materials classes and architectures with significance far beyond the scope of this project.
开发高效太阳能水分解系统的最有前途的方法之一是使用光电化学装置,该光电化学装置包括具有优化的光学(带隙)、光电化学(准费米能级、电流匹配)和表面催化性质的光电阴极和光电阳极的串联。例如,当使用带隙为1.1 eV和1.8 eV的两种吸收剂时,这种串联电池可以提供约25%的太阳能-氢气效率。虽然基于晶体硅(1.1eV)的高效低带隙光电阴极是可用的,但是将差距桥接到工作装置的主要挑战是开发具有良好匹配特性的高效且稳定的光电阳极:1.8eV的带隙,以及在低至0.4V vs. RHE(即,光电流开始于约0.2 V vs. RHE)。然而,目前还没有满足这些标准的材料,必须开发新材料。为了应对这一挑战,该合作项目旨在研究基于两种不同类型的光吸收剂的两种新型和不同类型的光阳极,基于理性考虑和理论(DFT)计算选择为非常有前途的:i)掺杂钨酸铜,和ii)锑掺杂氮化镓。对组成、结构、形态和结晶度的高度控制对于有效的光捕获和电荷分离至关重要。因此,将通过溶胶-凝胶和金属有机化学气相沉积(MOCVD)技术制备具有各种形貌(多孔、致密、外延层、纳米柱)的薄膜。为了确保水氧化的快速动力学,将通过原子层沉积和通过固有低温方法沉积用于析氧的高效非晶电催化剂的薄层(电化学,光电化学,和光化学金属有机沉积)为了避免热激活层间原子扩散形成缺陷,将采用详细的机理研究来确定光电阳极的光电化学性能。时间分辨太赫兹光电导探针和光诱导瞬态吸收光谱将被用来研究电荷输运特性和复合动力学。这些研究将推动光阳极的合理设计,并有望提供有关不同材料类别和结构中电荷动力学的独特知识,其意义远远超出本项目的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Radim Beránek其他文献

Professor Dr. Radim Beránek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Radim Beránek', 18)}}的其他基金

Interfacial engineering of semiconductors for highly selective light-driven chemical transformations
用于高选择性光驱动化学转化的半导体界面工程
  • 批准号:
    428764269
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Composite photocatalysts for selective photocatalytic oxidation of glycerol
用于甘油选择性光催化氧化的复合光催化剂
  • 批准号:
    276806543
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Design and Techno-economic assessment of an onboard carbon capture utilisation and sequestration (CCUS) system for LNG-powered vessels along an optimum blue LNG corridor to reduce port GHG emissions in Singapore
为沿最佳蓝色液化天然气走廊的液化天然气动力船舶设计船上碳捕集利用和封存 (CCUS) 系统并进行技术经济评估,以减少新加坡港口温室气体排放
  • 批准号:
    10078680
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Development of a physiologically based model for predicting the optimum harvest period for rice
开发基于生理的模型来预测水稻的最佳收获期
  • 批准号:
    23K05198
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimum design of reactive transport fields in fuel cells based on combined measurements using laser and X-ray and entropy mapping
基于激光、X 射线和熵映射组合测量的燃料电池中反应输运场的优化设计
  • 批准号:
    23K03692
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and optimum design of low NOx technology for igniters for scramjet combustors
超燃冲压发动机燃烧室点火器低NOx技术开发及优化设计
  • 批准号:
    23K13496
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
OPTIMUM OB-TXA: Optimal TIMing, route and dose of tranexamic acid prior to UMbilical cord clamp for postpartum hemorrhage prevention
最佳 OB-TXA:脐带钳夹前氨甲环酸预防产后出血的最佳时间、途径和剂量
  • 批准号:
    11000587
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Optimum design of variable vortex-induced vibration electric power generator with self-tunable vibration property
具有自调谐振动特性的变涡激振动发电机优化设计
  • 批准号:
    23K03639
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimized Predictive Treatment In Medications for Unipolar Major Depression (OPTIMUM-D)
单相重度抑郁症药物的优化预测治疗 (OPTIMUM-D)
  • 批准号:
    469292
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Project 4
项目4
  • 批准号:
    10349754
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Estimating Optimum Staffing Levels via Predicting Workload and Resources Requirements for Engineering and Construction Firms
通过预测工程和建筑公司的工作量和资源需求来估计最佳人员配置水平
  • 批准号:
    RGPIN-2020-03955
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of optimum arrangement of small-vertical-axis-wind-turbine clusters with interaction between the pairs and trios of turbines
小型垂直轴风力发电机组优化布置的研究
  • 批准号:
    22K12456
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了