Rare Variant Analysis of Next Generation Sequencing Studies with the Variable Binning / Variable Threshold (VB/VT) Collapsing Algorithm
使用可变分箱/可变阈值 (VB/VT) 折叠算法进行下一代测序研究的罕见变异分析
基本信息
- 批准号:279728737
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rare variants derived from next generation sequencing (NGS) studies are prime candidates to explain relevant portions of the so-called missing heritability of complex diseases. Respective statistical methods typically address multiple variants simultaneously and rely on a twofold parameterization of the analysis dataset: first, the choice of the threshold minor allele frequency to define rare and common variants, and, second, the definition of the SNP sets that shall be analyzed together (analysis bins). While the optimal definition of rareness can be obtained with the established variable threshold (VT) approach, a respective method for the choice of analysis bins was not proposed until now. This is an important methodological gap, since power is limited when selected analysis bins (exons, genes, haplotype blocks etc.) do not exactly correspond to associated regions. In a pilot study, we investigated the possibility to analyze all possible contiguous bins, i.e. bins with all possible combinations of start and end positions. While the theoretical number is high, in practice, the effective number of analysis bins is substantially lower for burden tests such as the collapsing method. We give the outline of an algorithm that efficiently identifies all effective bins, the variable binning (VB) algorithm. In addition, we plan to combine the VB algorithm with the VT approach. Adjustment for multiple testing shall be achieved within a Monte-Carlo simulation framework, adjustment for population stratification will be performed by localized genetic matching of cases and controls. Our goal is to provide an efficient implementation of the VB/VT algorithm that enables application to NGS studies as well as to combined GWAS/NGS studies on a Genome-wide scale. Power and validity of the algorithm will be evaluated via a simulation study and application to Exome-chip data and NGS data in collaboration with external partners.
从下一代测序(NGS)研究中获得的罕见变异是解释复杂疾病的所谓缺失遗传性相关部分的主要候选者。各自的统计方法通常同时处理多个变异,并依赖于分析数据集的双重参数化:首先,选择阈值小等位基因频率来定义罕见和常见的变异,其次,定义需要一起分析的SNP集(分析箱)。虽然用已建立的变阈值方法可以得到稀缺性的最优定义,但目前还没有相应的分析箱选择方法。这是一个重要的方法差距,因为当选择的分析箱(外显子,基因,单倍型块等)不完全对应于相关区域时,功率是有限的。在一项初步研究中,我们调查了分析所有可能的连续箱的可能性,即具有所有可能的开始和结束位置组合的箱。虽然理论数量很高,但在实践中,对于诸如崩溃方法之类的负荷测试,分析箱的有效数量要低得多。我们给出了一种有效识别所有有效箱的算法的概要,即变量箱(VB)算法。此外,我们计划将VB算法与VT方法相结合。多重检测的调整在蒙特卡罗模拟框架内完成,群体分层的调整通过病例与对照的局部基因匹配进行。我们的目标是提供VB/VT算法的有效实现,使其能够应用于NGS研究以及全基因组范围内的GWAS/NGS联合研究。该算法的能力和有效性将通过与外部合作伙伴合作对exome芯片数据和NGS数据进行模拟研究和应用来评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Nothnagel, Ph.D., since 6/2016其他文献
Professor Dr. Michael Nothnagel, Ph.D., since 6/2016的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TNFAIP8 variant 1调控巨噬细胞功能及血管生成参与肠癌肝转移的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
IgA肾病相关基因Megsin内致病性variant的鉴定
- 批准号:30570869
- 批准年份:2005
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Discovery and Characterization of Rare Variant Effects in Dilated Cardiomyopathy via Large-Scale Biobank Analysis
通过大规模生物库分析发现和表征扩张型心肌病的罕见变异效应
- 批准号:
10682290 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Missense rare variant analysis of APOE: Exploring the link between lipid metabolism and Alzheimer's disease
APOE 错义罕见变异分析:探索脂质代谢与阿尔茨海默病之间的联系
- 批准号:
21K07271 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rare variant analysis under quantitative trait-dependent sampling
数量性状依赖抽样下的稀有变异分析
- 批准号:
539410-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Rare variant-related analysis of TNFRSF13B in Japanese population with intracranial aneurysms
日本颅内动脉瘤人群中 TNFRSF13B 的罕见变异相关分析
- 批准号:
19K18444 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rare Variant Whole Genome Analysis and iPSC Validation of Putative Genetic Modifiers of Huntington Disease
亨廷顿病的假定遗传修饰物的罕见变异全基因组分析和 iPSC 验证
- 批准号:
10378177 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Rare Variant Whole Genome Analysis and iPSC Validation of Putative Genetic Modifiers of Huntington Disease
亨廷顿病的假定遗传修饰物的罕见变异全基因组分析和 iPSC 验证
- 批准号:
9925102 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Rare Variant Whole Genome Analysis and iPSC Validation of Putative Genetic Modifiers of Huntington Disease
亨廷顿病的假定遗传修饰物的罕见变异全基因组分析和 iPSC 验证
- 批准号:
10415229 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Rare Variant Whole Genome Analysis and iPSC Validation of Putative Genetic Modifiers of Huntington Disease
亨廷顿病的假定遗传修饰物的罕见变异全基因组分析和 iPSC 验证
- 批准号:
10619608 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Rare-variant analysis to validate HIV-target genes affecting human HIV-response
稀有变异分析以验证影响人类艾滋病毒反应的艾滋病毒靶基因
- 批准号:
9272726 - 财政年份:2016
- 资助金额:
-- - 项目类别: