Input-to-state stability and stabilization of distributed parameter systems
分布参数系统的输入状态稳定性和稳定性
基本信息
- 批准号:281417092
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robust stability and stabilization of control systems are fundamental and challenging problems in control theory and its applications. One of the milestones of stability theory is the theory of input-to-state stability (ISS), developed over the last two decades for ordinary differential equations and more general finite dimensional systems. This concept is especially useful for the analysis of robust stability of nonlinear systems, control design for nonlinear systems and the dynamics of interconnected systems.However, in the area of infinite-dimensional systems the theory is far from being complete. In modern applications, a crucial role is played by distributed parameter systems (DPS), both linear and nonlinear. ISS theory for such systems is becoming increasingly popular in recent years, but it is still fragmentary and considerably less developed than the finite dimensional case. Furthermore, over the last decade novel methods for stabilization of infinite-dimensional systems have been proposed; most notably, a continuum backstepping method. These approaches yield ISS-based methods for the design of robust and adaptive controllers for linear and nonlinear distributed parameter systems. To obtain powerful methods for control, however, major steps in theunderstanding and development of these methods are still required.In this project we are going to build a firm basis for the investigation of input-to-state stability and stabilization of distributed parameter systems. More specifically, our aims are:1. To develop an ISS theory for linear and bilinear distributed parameter systems, including criteria for input-to-state stability and stabilizability of linear and bilinear DPS and sufficient conditions for robustness of ISS.2. To obtain the infinite-dimensional counterparts of fundamental nonlinear results from ISS theory of finite-dimensional systems. In particular, Lyapunov characterizations of the ISS property, small-gain theorems for DPS and characterizations of ISS in terms of other stability properties.3. To develop methods for robust stabilization of infinite-dimensional systems, namely, a robust version of continuum backstepping, finite-time robust stabilization of partial differential equations and design of ISS stabilizers for port-Hamiltonian systems.In order to obtain these aims expertise is required in ISS theory, functional analysis, semigroup theory, infinite-dimensional systemstheory, partial differential equations, backstepping design and Lyapunov theory. Therefore we will work on this project as a team,consisting of three groups with complementary knowledge covering all of the above topics. It is the aim of the project to establish a solid basis for the long term development of ISS theory as a fundamental tool for a wide range of nonlinear infinite-dimensional systems.
控制系统的鲁棒稳定性和镇定是控制理论及其应用中的基础性和挑战性问题。稳定性理论的里程碑之一是输入到状态的稳定性(ISS)理论,它是近二十年来发展起来的常微分方程组和更一般的有限维系统。这一概念对于分析非线性系统的鲁棒稳定性、非线性系统的控制设计以及关联系统的动力学都是非常有用的,但在无穷维系统领域,这一理论还很不完善。在现代应用中,分布参数系统(DPS)扮演着重要的角色,包括线性和非线性。这类系统的ISS理论在最近几年变得越来越流行,但它仍然是支离破碎的,与有限维情况相比,它的发展程度要低得多。此外,在过去的十年里,已经提出了用于无穷维系统镇定的新方法,其中最著名的是连续统反推方法。这些方法产生了基于ISS的线性和非线性分布参数系统的鲁棒自适应控制器设计方法。然而,要获得强有力的控制方法,仍需要在理解和发展这些方法方面采取主要步骤。在这个项目中,我们将为研究分布参数系统的输入-状态稳定性和镇定奠定坚实的基础。更具体地说,我们的目标是:1.发展线性和双线性分布参数系统的ISS理论,包括线性和双线性分布参数系统输入-状态稳定性和可镇定的判据以及ISS的稳健性充分条件。从有限维系统的ISS理论出发,得到基本非线性结果的无穷维对应项。特别地,给出了ISS性质的Lyapunov刻画、DPS的小增益定理以及ISS的其他稳定性刻画。为了发展无穷维系统的鲁棒镇定方法,即连续介质反推的鲁棒形式、偏微分方程的有限时间鲁棒镇定和端口-哈密顿系统的ISS稳定器的设计,需要ISS理论、泛函分析、半群理论、无穷维系统理论、偏微分方程反推设计和Lyapunov理论方面的专业知识。因此,我们将作为一个团队工作在这个项目上,由三个小组组成,他们拥有涵盖所有上述主题的互补知识。该项目的目的是为ISS理论的长期发展奠定坚实的基础,ISS理论是一种广泛的非线性无限维系统的基本工具。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infinite-Dimensional Input-to-State Stability and Orlicz Spaces
- DOI:10.1137/16m1099467
- 发表时间:2016-09
- 期刊:
- 影响因子:0
- 作者:B. Jacob;R. Nabiullin;J. Partington;Felix L. Schwenninger
- 通讯作者:B. Jacob;R. Nabiullin;J. Partington;Felix L. Schwenninger
Non-coercive Lyapunov functions for infinite-dimensional systems
无限维系统的非强制 Lyapunov 函数
- DOI:10.1016/j.jde.2018.11.026
- 发表时间:2019
- 期刊:
- 影响因子:2.4
- 作者:A. Mironchenko;F. Wirth
- 通讯作者:F. Wirth
On continuity of solutions for parabolic control systems and input-to-state stability
- DOI:10.1016/j.jde.2018.11.004
- 发表时间:2017-09
- 期刊:
- 影响因子:2.4
- 作者:B. Jacob;Felix L. Schwenninger;H. Zwart
- 通讯作者:B. Jacob;Felix L. Schwenninger;H. Zwart
Characterizations of Input-to-State Stability for Infinite-Dimensional Systems
- DOI:10.1109/tac.2017.2756341
- 发表时间:2017-01
- 期刊:
- 影响因子:6.8
- 作者:A. Mironchenko;Fabian R. Wirth
- 通讯作者:A. Mironchenko;Fabian R. Wirth
Stability conditions for infinite networks of nonlinear systems and their application for stabilization
- DOI:10.1016/j.automatica.2019.108643
- 发表时间:2020-02-01
- 期刊:
- 影响因子:6.4
- 作者:Dashkovskiy, Sergey;Pavlichkov, Svyatoslav
- 通讯作者:Pavlichkov, Svyatoslav
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Sergey Dashkovskiy其他文献
Professor Dr. Sergey Dashkovskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Sergey Dashkovskiy', 18)}}的其他基金
Stability and robustness of attractors of nonlinear infinite-dimensional systems with respect to disturbances
非线性无限维系统吸引子对扰动的稳定性和鲁棒性
- 批准号:
405685496 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Recursive designs of robust and adaptive controllers for extensions of existing canonical forms and for their interconnections
用于扩展现有规范形式及其互连的鲁棒自适应控制器的递归设计
- 批准号:
197928859 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Extremum seeking for analog, digital and interconnected systems
极度追求模拟、数字和互连系统
- 批准号:
436509740 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
超导量子器件中关于量子计算、电路量子电动力学和退相干的研究
- 批准号:11174248
- 批准年份:2011
- 资助金额:75.0 万元
- 项目类别:面上项目
以硫氧还蛋白还原酶为靶点的化学生物学研究
- 批准号:21002047
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
拓扑绝缘体中的强关联现象
- 批准号:11047126
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
分子高振动-转动激发态结构中的复杂相互作用
- 批准号:11074204
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
激光催化下的旋量凝聚原子:自旋混合与共振拍
- 批准号:10974045
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
李超代数的表示和仿射李代数的VCS表示及双代数结构
- 批准号:10901028
- 批准年份:2009
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
基于SSD的大规模元数据处理技术研究
- 批准号:60970025
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Synthesis of new composite solid state electrolytes and development of high performace and high stability of solid state sodium ion battery
新型复合固态电解质的合成及高性能高稳定性固态钠离子电池的开发
- 批准号:
23K04915 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cancer-based discovery of novel mechanisms of chromatin control
基于癌症的染色质控制新机制的发现
- 批准号:
10660680 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Chromatin State Alterations in Fanconi Anemia Hematologic Disease and Bone Marrow Failure
范可尼贫血血液疾病和骨髓衰竭中的染色质状态改变
- 批准号:
10735366 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Smooth muscle cell-derived cell fates and cellular interactions in atherosclerotic plaque stability in disease progression and regression.
平滑肌细胞衍生的细胞命运和细胞相互作用在疾病进展和消退中动脉粥样硬化斑块的稳定性。
- 批准号:
10567844 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Small RNA interactions with transgenes in genetically modified mosquito lines
小RNA与转基因蚊子品系中转基因的相互作用
- 批准号:
10654368 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identification of smooth muscle cell genes causal in atherosclerotic plaque stability and cardiovascular disease risk
鉴定导致动脉粥样硬化斑块稳定性和心血管疾病风险的平滑肌细胞基因
- 批准号:
10720225 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Toward Restoration of Normative Postural Control and Stability using Neural Control of Powered Prosthetic Ankles
使用动力假肢踝关节的神经控制恢复规范的姿势控制和稳定性
- 批准号:
10745442 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Coupling Epitranscriptomics to Molecular Disease Mechanisms and Nucleic Acid Therapeutics in Persistent Residual HIV Infection
表观转录组学与持续残留 HIV 感染的分子疾病机制和核酸治疗的耦合
- 批准号:
10462348 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Phase separation of nuclear tau and its role in gene regulation
核tau蛋白的相分离及其在基因调控中的作用
- 批准号:
10524696 - 财政年份:2022
- 资助金额:
-- - 项目类别:














{{item.name}}会员




