Recursive designs of robust and adaptive controllers for extensions of existing canonical forms and for their interconnections

用于扩展现有规范形式及其互连的鲁棒自适应控制器的递归设计

基本信息

项目摘要

Nonlinear systems appear in many modern engineering problems. Stability is one of the fundamental properties of such systems needed for their performance. Another challenging aspect is the robustness with respect to disturbances that can destabilize them. Furthermore, some parameters of a system can be unknown that leads to various adaptive control problems. During the last two decades such recursive designs as backstepping and forwarding became classical and found many applications in various industrial and engineering problems. However all this classical theory is applicable to some special canonical forms only: strict-feedback or purefeedback in the regular case (feedback linearizable systems), or to their very special polynomial extensions. The goals of the project are: 1) To extend as wide as possible the existing classes of systems the backstepping framework is applicable to and to extend the methods for solving robust and adaptive control problems for these new classes. First, this will be done for ODE systems, then for a wider classes such as delay systems, switched systems (and other types of hybrid systems). 2) To provide constructive algorithms that solve the above-mentioned problems numerically and which suit for the singular case (for systems that do not have a controllable linearization and are not feedback linearizable). 3) As we will work with time-varying systems and use the ISS framework to cope with disturbances, another goal is to extend the ISS theory that exists for time-varying systems to the case of time-varying ones and to use it for the achievement of the first two goals.
非线性系统出现在许多现代工程问题中。稳定性是这类系统的基本性能之一。另一个具有挑战性的方面是相对于可能使其不稳定的干扰的鲁棒性。此外,系统的某些参数可能是未知的,这导致各种自适应控制问题。在过去的二十年中,诸如backstepping和forwarding之类的递归设计成为经典,并在各种工业和工程问题中找到了许多应用。然而,所有这些经典的理论是适用于一些特殊的标准形式:严格反馈或purefeedback在正常情况下(反馈线性化系统),或其非常特殊的多项式扩展。该项目的目标是:1)尽可能广泛地扩展现有的系统类的backstepping框架是适用于和扩展的方法来解决这些新的类的鲁棒和自适应控制问题。首先,这将是为ODE系统,然后为更广泛的类别,如延迟系统,切换系统(和其他类型的混合系统)。2)为了提供建设性的算法,解决上述问题的数字和适用于奇异的情况下(对于系统,没有一个可控的线性化和不反馈线性化)。3)由于我们将处理时变系统并使用ISS框架来科普干扰,另一个目标是将时变系统的ISS理论扩展到时变系统的情况,并使用它来实现前两个目标。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global uniform input-to-state stabilization of large-scale interconnections of MIMO generalized triangular form switched systems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sergey Dashkovskiy其他文献

Professor Dr. Sergey Dashkovskiy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sergey Dashkovskiy', 18)}}的其他基金

Stability and robustness of attractors of nonlinear infinite-dimensional systems with respect to disturbances
非线性无限维系统吸引子对扰动的稳定性和鲁棒性
  • 批准号:
    405685496
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Input-to-state stability and stabilization of distributed parameter systems
分布参数系统的输入状态稳定性和稳定性
  • 批准号:
    281417092
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Extremum seeking for analog, digital and interconnected systems
极度追求模拟、数字和互连系统
  • 批准号:
    436509740
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

图的正则性和胞腔代数
  • 批准号:
    10871027
  • 批准年份:
    2008
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development and implementation of protected area introduction designs that are robust to future uncertainties
开发和实施对未来不确定性具有鲁棒性的保护区引入设计
  • 批准号:
    23H03585
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optimal and Robust Designs for Active Learning and Regression Analysis
主动学习和回归分析的最佳稳健设计
  • 批准号:
    RGPIN-2020-05283
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust regression designs for models with possible misspecification of change points
针对可能错误指定变化点的模型进行稳健回归设计
  • 批准号:
    575000-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Implanted but not forgotten: identifying and testing pragmatic strategies to improve inferior vena cava filter retrieval
植入但不被遗忘:识别和测试改善下腔静脉滤器回收的实用策略
  • 批准号:
    10428918
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Reserach: SHF:Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Designs
协作研究:SHF:Medium:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
  • 批准号:
    2107373
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Topics in Threshold Models: Efficient Procedures under Endogeneity in Regression Discontinuity Designs and Distributed and Robust Estimation of Change-Points
阈值模型主题:回归间断设计中内生性下的有效程序以及变化点的分布式鲁棒估计
  • 批准号:
    2113364
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optimal and Robust Designs for Active Learning and Regression Analysis
主动学习和回归分析的最佳稳健设计
  • 批准号:
    RGPIN-2020-05283
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust Designs Inspired by Biological Chiral Structures
受生物手性结构启发的稳健设计
  • 批准号:
    DE200100887
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了