Testing and improvement of a prototype application for lesion classification and data creation for computerized image analysis for lesion detection in multiple myeloma
测试和改进用于多发性骨髓瘤病变检测的计算机图像分析的病变分类和数据创建的原型应用程序
基本信息
- 批准号:286489910
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multiple Myeloma (MM) is a systemic tumor disease in the bone marrow, which affects the skeleton. It causes multiple tumors in bones, but also osteolytic lesions, resulting in diffuse or focal dissolution of bone tissue. These lesions cause painful bone destruction and fractures. Currently, neither overall tumor mass nor the degree of skeletal changes can be quantified. Therefor the segmentation of every single lesion is needed. The large amount of lesions and the examination of the whole skeleton impede manual segmentation of all lesions in the clinician's daily routine. Delineation of tumors and osteolytic lesions requires multiple modalities because lesions show different characteristics in different modalities. Only by using automatic methods this segmentation task can be performed in a reasonable way. Currently, no automatic solutions for this problem are available. Knowing overall tumor volume and quantification of skeletal status might lead to more accurate staging and therapy monitoring. An important step for this analysis is the segmentation of single bones. Segmentation of single bones is also important in other applications. For the analysis of new treatment strategies in MM, for the irradiation of bones e.g., the volume of the affected hematopoietic bone marrow is relevant. Therefor the segmentation of the bones is necessary. Furthermore, segmentation of single bones is highly relevant for other applications in oncology and radiotherapy, since bones give important information for motion analysis and motion compensation during therapy. In this project, the data basis is to be created for further automation of image analysis in MM. An already developed prototype for lesion classification for lesion segmentation based on multimodal features was exemplarily tested on 4 MM patients. Aim of the project is the analysis and improvement of this prototype application. The application is to be trained and tested based on a larger data sample. Therefor the creation of training data is needed, which requires manual segmentation of lesions and single bones in whole body images. Manual segmentation of lesions is essential since it is the base for a pattern recognition method that uses multimodal features and learns characteristics of lesions and healthy tissues and should later be able to detect lesions in new whole body images. Manual bone segmentations are used first, to limit the search region for the prototype application to bone and second, to provide a training data sample for the development of an automatic bone segmentation method.
多发性骨髓瘤(MM)是一种累及骨骼的骨髓系统性肿瘤疾病。它在骨骼中引起多个肿瘤,但也引起溶骨性病变,导致骨组织的弥漫性或局灶性溶解。这些病变导致疼痛的骨破坏和骨折。目前,无论是整体肿瘤质量还是骨骼变化的程度都无法量化。因此,需要对每一个病灶进行分割。大量的病变和对整个骨骼的检查阻碍了临床医生日常工作中对所有病变的手动分割。肿瘤和溶骨性病变的描述需要多种模式,因为病变在不同模式下表现出不同的特征。只有通过使用自动方法,才能以合理的方式执行此分割任务。目前,没有针对此问题的自动解决方案。了解整体肿瘤体积和骨骼状态的量化可能会导致更准确的分期和治疗监测。这种分析的一个重要步骤是单个骨骼的分割。单个骨骼的分割在其他应用中也很重要。对于MM的新治疗策略的分析,对于骨的照射,例如,受影响的造血骨髓的体积是相关的。因此,骨骼的分割是必要的。此外,单个骨骼的分割与肿瘤学和放射疗法中的其他应用高度相关,因为骨骼为治疗期间的运动分析和运动补偿提供了重要信息。在该项目中,将创建数据基础,用于MM中图像分析的进一步自动化。已开发的基于多模态特征的病变分割的病变分类原型在4例MM患者上进行了示例性测试。该项目的目的是分析和改进这个原型应用程序。应用程序将基于更大的数据样本进行训练和测试。因此,需要创建训练数据,这需要手动分割全身图像中的病变和单个骨骼。病变的手动分割是必不可少的,因为它是模式识别方法的基础,该方法使用多模态特征并学习病变和健康组织的特征,并且以后应该能够在新的全身图像中检测病变。首先使用手动骨分割,以将原型应用的搜索区域限制为骨,其次为自动骨分割方法的开发提供训练数据样本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Andrea Fränzle其他文献
Dr. Andrea Fränzle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
微生物灌浆:地基基础加固的新探索
- 批准号:51078202
- 批准年份:2010
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Family-Centered Digital Behavioral Sleep Intervention for Black Families of Preschool-Aged Children
针对学龄前儿童黑人家庭的以家庭为中心的数字行为睡眠干预
- 批准号:
10723348 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of an innovative neurosurgical planning tool for awake craniotomy
开发用于清醒开颅手术的创新神经外科规划工具
- 批准号:
10698940 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Addressing Inactive Kidney Transplant Waitlist Status through Adapting a Tailored Psycho-Social-Environmental Program
通过调整定制的心理社会环境计划来解决不活跃肾移植等候名单的问题
- 批准号:
10664169 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Implantable Microarray Probe for Real-Time Glutamate and GABA Detection
用于实时谷氨酸和 GABA 检测的植入式微阵列探针
- 批准号:
10761486 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Effective Primary care practices that Enhance Recovery Trajectories after pneumonia (EXPERT)
增强肺炎后康复轨迹的有效初级保健实践(专家)
- 批准号:
10717618 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SCH: Contactless and Engagement-free Sleep Apnea Monitoring and Characterization
SCH:非接触式、免接触式睡眠呼吸暂停监测和表征
- 批准号:
10816627 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clinical biomarker for early prediction of chemotherapy-induced peripheral neuropathy
早期预测化疗引起的周围神经病变的临床生物标志物
- 批准号:
10604018 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A ratcheting pediatric prosthetic finger using advanced rapid manufacturing technology
采用先进快速制造技术的棘轮儿童假肢手指
- 批准号:
10760098 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Noninvasive sleep enhancement and behavior monitoring technologies for Alzheimer's model mice
阿尔茨海默病模型小鼠的无创睡眠增强和行为监测技术
- 批准号:
10698532 - 财政年份:2023
- 资助金额:
-- - 项目类别: