Image-guided non-invasive tracking for radiotherapy using machine learning

使用机器学习进行图像引导的放射治疗无创跟踪

基本信息

项目摘要

Physiological motion of tumour patients is a prevailing uncertainty that leads to inaccurate delivery of radiation in both conventional radiotherapy and therapeutic ultrasound. Intra-operative guidance by magnetic resonance imaging or ultrasound, complemented with sophisticated image analysis is going to play a vital role in providing reliable, accurate and realtime information of tumour motion.The aim of this project is to advance the current state-of-the-art of intra-operative motion estimation by employing recent approaches from machine learning together with training data obtained with highly accurate keypoint registration. Instead of relying on classical statistical motion models, we plan to learn a cascade of nonlinear regression functions between image features and previously seen motion. Initial patient-specific image sequences acquired before the start of radiation delivery will be employed to generate training data using accurate but more time-consuming image registration. This will yield correspondences for relevant keypoints that are located on organ surfaces, vessels and the tumour itself. Building upon recent advances from the field of computer vision and machine learning, these correspondences are used to train a nonlinear model that links motion with specifically adapted robust image features that are learned for each modality using deep convolutional networks. By using shape augmentation together with population data and an online learning procedure, we will be able to limit the required number of frames in the training sequence.Incorporating the prior knowledge of pre-acquired images into the learned model will enable us to not only accurately track visible tumour or important vessel structures, but importantly also the shape and position of organs at risk, which will help to avoid radiation to healthy tissues and therefore side-effects of radiotherapy. The learned model may furthermore help to estimate the position of anatomies that are temporarily out of view or occluded. Due to the high computational efficiency of the planned regression model processing times of few milliseconds per image frame are expected.
肿瘤患者的生理运动是一种普遍存在的不确定性,导致传统放射治疗和治疗超声中的辐射传递不准确。通过磁共振成像或超声进行的术中引导,辅以复杂的图像分析,将在提供可靠、准确和实时的肿瘤运动信息方面发挥至关重要的作用。该项目的目的是通过采用最新的机器学习方法以及通过高精度关键点配准获得的训练数据来推进当前最先进的术中运动估计。我们计划学习图像特征和先前看到的运动之间的一系列非线性回归函数,而不是依赖经典的统计运动模型。在放射治疗开始之前获取的初始患者特定图像序列将用于使用准确但更耗时的图像配准来生成训练数据。这将产生位于器官表面、血管和肿瘤本身的相关关键点的对应关系。基于计算机视觉和机器学习领域的最新进展,这些对应关系用于训练非线性模型,该模型将运动与使用深度卷积网络针对每种模态学习的专门适应的鲁棒图像特征联系起来。通过将形状增强与人口数据和在线学习程序结合使用,我们将能够限制训练序列中所需的帧数。将预先获取的图像的先验知识纳入学习模型中,将使我们不仅能够准确跟踪可见的肿瘤或重要的血管结构,而且重要的是还能跟踪处于危险中的器官的形状和位置,这将有助于避免对健康组织的辐射,从而避免放射治疗的副作用。学习的模型还可以帮助估计暂时看不见或被遮挡的解剖结构的位置。由于计划回归模型的计算效率很高,预计每个图像帧的处理时间为几毫秒。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semantically Guided Large Deformation Estimation with Deep Networks
  • DOI:
    10.3390/s20051392
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ha, In Young;Wilms, Matthias;Heinrich, Mattias
  • 通讯作者:
    Heinrich, Mattias
Comparing Deep Learning Strategies and Attention Mechanisms of Discrete Registration for Multimodal Image-Guided Interventions
  • DOI:
    10.1007/978-3-030-33642-4_16
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Ha;M. Heinrich
  • 通讯作者:
    I. Ha;M. Heinrich
Model-Based Sparse-to-Dense Image Registration for Realtime Respiratory Motion Estimation in Image-Guided Interventions
  • DOI:
    10.1109/tbme.2018.2837387
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ha, In Young;Wilms, Matthias;Heinrich, Mattias P.
  • 通讯作者:
    Heinrich, Mattias P.
Modality-agnostic self-supervised deep feature learning and fast instance optimisation for multimodal fusion in ultrasound-guided interventions
超声引导干预中多模态融合的模态不可知自监督深度特征学习和快速实例优化
Semantically Guided 3D Abdominal Image Registration with Deep Pyramid Feature Learning
通过深度金字塔特征学习进行语义引导的 3D 腹部图像配准
  • DOI:
    10.1007/978-3-658-33198-6_6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mona Schumacher;Daniela Frey;In Young Ha;Ragnar Bade;Andreas Genz;Mattias P. Heinrich
  • 通讯作者:
    Mattias P. Heinrich
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Mattias Heinrich其他文献

Professor Dr. Mattias Heinrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Mattias Heinrich', 18)}}的其他基金

Learning contrast-invariant contextual local descriptors and similarity metrics for multi-modal image registration
学习多模态图像配准的对比度不变上下文局部描述符和相似性度量
  • 批准号:
    320997906
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Automatic labelling of anatomies in large-scale medical image datasets through self-supervised and multimodal learning
通过自我监督和多模态学习自动标记大规模医学图像数据集中的解剖结构
  • 批准号:
    500498869
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似海外基金

Development of contrast agents to facilitate image-guided surgery
开发造影剂以促进图像引导手术
  • 批准号:
    10810184
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Commercialization readiness for a 3D image guidance system to support interventional procedures in the spine and pelvis
支持脊柱和骨盆介入手术的 3D 图像引导系统已做好商业化准备
  • 批准号:
    10709021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Commercialization readiness for a 3D image guidance system to support interventional procedures in the spine and pelvis
支持脊柱和骨盆介入手术的 3D 图像引导系统已做好商业化准备
  • 批准号:
    10601686
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Biodegradable Radiopaque Polymeric Scaffolds Loaded with Mesenchymal Stem Cells for Image-Guided Arteriovenous Fistula Maturation and Long-Term Patency
装载有间充质干细胞的可生物降解的不透射线聚合物支架,用于图像引导动静脉瘘的成熟和长期通畅
  • 批准号:
    10464154
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Biodegradable Radiopaque Polymeric Scaffolds Loaded with Mesenchymal Stem Cells for Image-Guided Arteriovenous Fistula Maturation and Long-Term Patency
装载有间充质干细胞的可生物降解的不透射线聚合物支架,用于图像引导动静脉瘘的成熟和长期通畅
  • 批准号:
    10606532
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Image-guided combination therapies for radiotherapy-induced neurocognitive impairment in pediatric brain tumor survivors
图像引导联合疗法治疗儿童脑肿瘤幸存者放疗引起的神经认知障碍
  • 批准号:
    10652561
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Image-guided Interventional Combination Liver Cancer Immunotherapy
影像引导介入性肝癌联合免疫治疗
  • 批准号:
    10348797
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Image-guided combination therapies for radiotherapy-induced neurocognitive impairment in pediatric brain tumor survivors
图像引导联合疗法治疗儿童脑肿瘤幸存者放疗引起的神经认知障碍
  • 批准号:
    10449372
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Ultrasound image-guided treatment of ischemia-reperfusion injury using argon microbubbles
超声图像引导氩气微泡治疗缺血再灌注损伤
  • 批准号:
    10415201
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Image-guided Interventional Combination Liver Cancer Immunotherapy
影像引导介入性肝癌联合免疫治疗
  • 批准号:
    10399666
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了