Learning contrast-invariant contextual local descriptors and similarity metrics for multi-modal image registration
学习多模态图像配准的对比度不变上下文局部描述符和相似性度量
基本信息
- 批准号:320997906
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deformable image registration is a key component for clinical imaging applications involving multi-modal image fusion, estimation of local deformations and image-guided interventions. A particular challenge for establishing correspondences between scans from different modalities: magnetic resonance imaging (MRI), computer tomography (CT) or ultrasound, is the definition of image similarity. Relying directly on intensity differences is not sufficient for most clinical images, which exhibit non-uniform changes in contrast, image noise, intensity distortions, artefacts, and globally non-linear intensity relations (for different modalities).In this project algorithms with increased robustness for medical image registration will be developed. We will improve on current state-of-the-art similarity measures by combining a larger number of versatile image features using simple local patch or histogram distances. Contrast-invariance and strong discrimination between corresponding and non-matching regions will be reached by capturing contextual information through pair-wise comparisons within an extended spatial neighbourhood of each voxel. Recent advances in machine learning will be used to learn problem-specific binary descriptors in a semi-supervised manner that can improve upon hand-crafted features by including a priori knowledge. Metric learning and higher-order mutual information will be employed for finding mappings between feature vectors across scans in order to reveal new relations among feature dimensions. Employing binary descriptors and sparse feature selection will improve computational efficiency (because it enables the use of the Hamming distance), while maintaining the robustness of the proposed methods.A deeper understanding of models for image similarity will be reached during the course of this project. The development of new methods for currently challenging (multi-modal) medical image registration problems will open new perspectives of computer-aided applications in clinical practice, including multi-modal diagnosis, modality synthesis, and image-guided interventions or radiotherapy.
可变形图像配准是涉及多模态图像融合、局部变形估计和图像引导干预的临床成像应用的关键组成部分。在来自不同模态(磁共振成像(MRI)、计算机断层扫描(CT)或超声)的扫描之间建立对应关系的一个特殊挑战是图像相似性的定义。直接依赖于强度差异是不够的,大多数临床图像,表现出非均匀的变化,对比度,图像噪声,强度失真,伪影,和全球非线性强度关系(不同的模态)。我们将通过使用简单的局部补丁或直方图距离结合大量的通用图像特征来改进当前最先进的相似性度量。通过在每个体素的扩展空间邻域内进行成对比较来捕获上下文信息,将实现对应区域和非匹配区域之间的对比度不变性和强区分。机器学习的最新进展将用于以半监督的方式学习特定于问题的二进制描述符,该方式可以通过包含先验知识来改进手工制作的特征。度量学习和高阶互信息将被用于寻找跨扫描的特征向量之间的映射,以揭示特征维度之间的新关系。采用二进制描述符和稀疏特征选择将提高计算效率(因为它允许使用汉明距离),同时保持所提出方法的鲁棒性。在本项目的过程中,将对图像相似性模型有更深入的理解。目前具有挑战性的(多模态)医学图像配准问题的新方法的开发将打开计算机辅助应用在临床实践中的新视角,包括多模态诊断,模态合成,图像引导的干预或放射治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Mattias Heinrich其他文献
Professor Dr. Mattias Heinrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Mattias Heinrich', 18)}}的其他基金
Image-guided non-invasive tracking for radiotherapy using machine learning
使用机器学习进行图像引导的放射治疗无创跟踪
- 批准号:
286491894 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Automatic labelling of anatomies in large-scale medical image datasets through self-supervised and multimodal learning
通过自我监督和多模态学习自动标记大规模医学图像数据集中的解剖结构
- 批准号:
500498869 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants (Transfer Project)
相似国自然基金
心脏超声造影的安全性研究
- 批准号:30870721
- 批准年份:2008
- 资助金额:31.0 万元
- 项目类别:面上项目
X射线相位对比CT成像对人体小器官显微影像学研究
- 批准号:30770618
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
具有磁共振成像增强和光动力治疗双功能试剂的合成与性能
- 批准号:20672039
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
生物素-亲和素介导超声造影剂对乳腺癌血管生成分子靶向显像的研究
- 批准号:30670580
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
生物激活多肽磁共振成像造影剂的研究
- 批准号:20675033
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
声学造影技术在炎症诊断中的应用基础研究
- 批准号:30370589
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
Contaminants of emerging concern: An integrated approach for assessing impacts on the marine environment. Acronym: CONTRAST
新出现的污染物:评估对海洋环境影响的综合方法。
- 批准号:
10093180 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
- 批准号:
2339015 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Neural mechanism of the luminance contrast effect on perceived depth from disparity
亮度对比度对视差感知深度影响的神经机制
- 批准号:
24K16880 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
- 批准号:
478732 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Non-destructive assessment of cell repopulation in scaffolds for osteochondral regeneration through X-ray phase-contrast microtomography
通过 X 射线相差显微断层扫描对骨软骨再生支架中的细胞增殖进行无损评估
- 批准号:
2872729 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
- 批准号:
2322379 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SCH:Artificial Intelligence for Contrast-Enhanced Imaging
SCH:用于对比度增强成像的人工智能
- 批准号:
2306545 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Intelligent Multi-Contrast Imaging Platform for Needle-Based Interventions
职业:用于针干预的智能多对比成像平台
- 批准号:
2238648 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of novel nanobubbles composed of antibody drugs and ultrasound contrast gas and their potential applications
抗体药物与超声对比气体组成的新型纳米气泡的研制及其潜在应用
- 批准号:
23K18565 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
-- - 项目类别: