Non-Smooth Variational Models with Second Order and Local Anisotropy Priors for Restoring Cyclic and Manifold-Valued Images

用于恢复循环和流形值图像的具有二阶和局部各向异性先验的非平滑变分模型

基本信息

项目摘要

Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on various imaging tasks. Many useful techniques rely on non-smooth, convex functionals. Combinations of first and second order derivatives in regularization functionals or the incorporation of anisotropies steered by the local structures of the image have led to very powerful image restoration techniques. Splitting algorithms together with primal-dual optimization methods are the state-of-the-art techniques for minimizing these functionals. Their strength consists in the splitting of the original problem into a sequence of proximal mappings which can be computed efficiently.In various applications in image processing and computer vision the functions of interest take values on the circle or in manifolds. Although manifolds play an important role in these fields for a long time, there are only few papers which combine results on non-smooth optimization which were recently extensively exploited in real-valued image processing with manifold-valued settings. This leaves high potential for future research.In our project we want to generalize convex models for the restoration of real-valued images to cyclic and manifold-valued images. We want to focus on symmetric spaces having applications in image processing. For Hadamard spaces the models are still convex which is in general, e.g., for spheres, not the case. A specific feature of our models is that their regularization terms will incorporate first and second order differences or directional anisotropies. The challenges of our project include the appropriate construction of restoration models for manifold-valued signals and images, the analysis of the models, and the development of efficient minimization algorithms, including convergence results. There is a rich potential for applications of the methods which will be developed within our project. Among others we will use our models for the analysis of Electroencephalographical data and of Electron Backscattered Diffraction data. A publicly available software package is planed as well.
如今,成像中的变分方法正朝着一种相当通用和灵活的工具发展,允许在各种成像任务中使用非常成功的方法。许多有用的技巧都依赖于非光滑的凸泛函。一阶和二阶导数在正则化泛函中的组合或由图像的局部结构引导的各向异性的结合导致了非常强大的图像恢复技术。分裂算法和原始-对偶优化方法是最小化这些泛函的最新技术。它们的优点在于将原始问题分解成一系列可以有效计算的近似映射。在图像处理和计算机视觉中的各种应用中,感兴趣的函数取值于圆或流形。虽然流形在这些领域中扮演着重要的角色很长一段时间,但将非光滑优化的结果结合在一起的论文很少,这些结果最近在流形环境下的实值图像处理中得到了广泛的应用。这为未来的研究留下了很大的潜力。在我们的项目中,我们希望将实值图像恢复的凸模型推广到循环图像和流形图像。我们希望关注对称空间在图像处理中的应用。对于Hadamard空间,模型仍然是凸的,这通常是,例如,对于球面,不是这种情况。我们模型的一个具体特征是,它们的正则化项将包含一阶和二阶差分或方向各向异性。我们项目的挑战包括为多值信号和图像建立适当的恢复模型,分析模型,以及开发高效的最小化算法,包括收敛结果。将在我们的项目中开发的方法有很大的应用潜力。在其他方面,我们将使用我们的模型来分析脑电数据和电子背向散射衍射数据。此外,还计划推出一个可公开使用的软件包。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Second-Order TV-Type Approach for Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector Space Data
A Second Order Nonsmooth Variational Model for Restoring Manifold-Valued Images
恢复流形值图像的二阶非光滑变分模型
  • DOI:
    10.1137/15m101988x
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bačák;R. Bergmann;G. Steidl;A. Weinmann
  • 通讯作者:
    A. Weinmann
A Parallel Douglas-Rachford Algorithm for Minimizing ROF-like Functionals on Images with Values in Symmetric Hadamard Manifolds
  • DOI:
    10.1137/15m1052858
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ronny Bergmann;Johannes Persch;G. Steidl
  • 通讯作者:
    Ronny Bergmann;Johannes Persch;G. Steidl
Total Generalized Variation for Manifold-Valued Data
  • DOI:
    10.1137/17m1147597
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Bredies;M. Holler;M. Storath;A. Weinmann
  • 通讯作者:
    K. Bredies;M. Holler;M. Storath;A. Weinmann
A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics
  • DOI:
    10.1137/16m1087114
  • 发表时间:
    2016-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Friederike Laus;M. Nikolova;Johannes Persch;G. Steidl
  • 通讯作者:
    Friederike Laus;M. Nikolova;Johannes Persch;G. Steidl
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ronny Bergmann其他文献

Professor Dr. Ronny Bergmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
  • 批准号:
    BB/Y513994/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Elucidating the fundamental mechanisms of stress corrosion cracking from smooth tensile specimens under constant load for quantitative life-prediction
职业:阐明恒定载荷下光滑拉伸样品应力腐蚀开裂的基本机制,以进行定量寿命预测
  • 批准号:
    2339696
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Fabrication of contractable vascular model through smooth muscle tissue and functional assessment under drug testing
平滑肌组织可收缩血管模型的制作及药物测试下的功能评估
  • 批准号:
    23K19195
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Passive interlocking mechanisms that generate smooth locomotion inherent in the musculoskeletal system of archosaurs
产生祖龙肌肉骨骼系统固有的平滑运动的被动联锁机制
  • 批准号:
    23K03765
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Epigenetic Regulator Prdm16 Controls Smooth Muscle Phenotypic Modulation and Atherosclerosis Risk
表观遗传调节因子 Prdm16 控制平滑肌表型调节和动脉粥样硬化风险
  • 批准号:
    10537602
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Vascular Smooth Muscle Protein Quality Control and Aortic Aneurysm Formation
血管平滑肌蛋白质量控制与主动脉瘤形成
  • 批准号:
    10714562
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Systems Genetics of Vascular Smooth Muscle Phenotypes
血管平滑肌表型的系统遗传学
  • 批准号:
    10771623
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
  • 批准号:
    10586599
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Effect of shear stress on coronary smooth muscle maturation
剪切应力对冠状动脉平滑肌成熟的影响
  • 批准号:
    10580556
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Obscurin-Deficient Breast Epithelia Generate Secreted Factors that Prime Lung Vascular Smooth Muscle Cell Pre-metastatic Microenvironment Formation
暗蛋白缺陷的乳腺上皮细胞产生分泌因子,促进肺血管平滑肌细胞转移前微环境的形成
  • 批准号:
    10749467
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了