Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
基本信息
- 批准号:10586599
- 负责人:
- 金额:$ 58.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbnormal CellAffectAmino AcidsAnimal ModelAortaArterial InjuryArteriesAtherosclerosisAtomic Force MicroscopyAttenuatedBiochemicalBiocompatible MaterialsBiologicalBiological ModelsBiologyBiomechanicsBiomimeticsBiophysical ProcessBlood VesselsCardiovascular DiseasesCardiovascular systemCell SeparationCell physiologyCellsCellular biologyChromatinCoronary ArteriosclerosisCoronary heart diseaseCoupledDNA Sequence AlterationDataDevelopmentDiseaseDisease ProgressionEnvironmentEventExtracellular MatrixExtracellular Matrix ProteinsFamily suidaeFeedbackFluorescent in Situ HybridizationGene ExpressionGenetic TranscriptionGoalsHistologicHistologyHumanHyperplasiaImageIn VitroInjuryInvadedMachine LearningMechanicsMediatingMedicineMicroscopyModelingMolecularMonitorMorphologyMusNuclear StructureOpticsPathologicPathologic ProcessesPathologyPharmacotherapyPhenotypePhysical condensationPhysiologicalProductionProliferatingPropertyProtein FamilyProteinsRNAResearchResearch PersonnelResearch ProposalsResolutionRoleSmooth Muscle MyocytesStructureSystemTestingTherapeuticTimeTissue EngineeringTissuesVascular Smooth MuscleWorkarterial remodelingarterial stiffnesscardiovascular risk factorcell behaviorcell motilityepigenomicsfemoral arteryin vivoin vivo Modelinhibitor-of-apoptosis proteininjuredknock-downmachine learning algorithmmembermigrationmouse modelnanofibernanoscaleneointima formationnew therapeutic targetnoveloverexpressionpolyacrylamide hydrogelsprotein expressionreconstructionresponsescaffoldsingle cell analysissoft tissuesurvivinthree dimensional cell culturetranscriptome sequencingtranscriptomicsvascular abnormalityvascular injuryvascular smooth muscle cell migrationvascular smooth muscle cell proliferation
项目摘要
SUMMARY
Arterial stiffness is a key risk factor for cardiovascular disease (CVD) events. A change in arterial
stiffness is a significant pathology in vascular injury, atherosclerosis, and coronary disease. Stiffening
of the vessel wall promotes anomalous migration and proliferation of vascular smooth muscle cells
(VSMCs), leading to neointima formation on the vessel wall. It is not clear, however, how the
extracellular matrix (ECM) influences these pathological processes. This research proposal will address
this by exploring how changes in arterial stiffness elicit VSMC behaviors that contribute to cardiovascular
disease. Specifically, this work draws upon preliminary data revealing that the protein survivin is a key
regulator of stiffness-mediated VSMC proliferation and migration and an effector of arterial stiffening
and remodeling. Using mouse and human VSMCs, we will first explore how vascular ECM stiffness
impacts VSMC migration, proliferation, and chromatin organization at the single-cell level (early stage
of disease progression; Aim 1) and, second, determine how pathological ECM stiffness drives neointima
formation, altering the local mechanical environment of VSMCs in vitro (advanced stage of disease
progression; Aim 2). Lastly, we will confirm survivin’s role in regulating both ECM production and arterial
stiffness (in vivo animal model; Aim 2). These aims will be achieved using 3D cell culture with a novel
in vitro porcine decellularized aorta ECM-based fibrous scaffold system and mouse injury models. Briefly,
VSMCs isolated from mouse and human aortas will be cultured on nanofibrous scaffolds of different
stiffnesses and structures that mimic normal and pathological conditions in the body. The VSMC
responses to pathological ECM stiffness will be analyzed using advanced microscopy to observe
changes in cellular/nuclear structure and biomechanical properties in vitro, and the RNA and protein
expression will be assessed at the single-cell level. Finally, arterial stiffness and VSMC function will be
studied in intact arteries of injured mice; histology and biochemical analyses of dissected tissues will be
conducted after arterial stiffness has been manipulated by arterial injury, drug treatment, or genetic
mutations. This project will, for the first time, study the molecular and biophysical mechanisms by which
survivin (i) mediates stiffness-sensitive VSMC functions and (ii) contributes to neointima formation and
stiffening, revealing a completely new aspect of survivin biology in VSMCs and in the pathology of
arterial stiffness. Overall, this proposal is unique in its ability to identify potential new therapeutic targets
for the treatment of CVDs.
总结
动脉僵硬度是心血管疾病(CVD)事件的关键风险因素。动脉的变化
僵硬是血管损伤、动脉粥样硬化和冠状动脉疾病的重要病理。加强
促进血管平滑肌细胞的异常迁移和增殖
血管平滑肌细胞(VSMCs),导致血管壁新生内膜形成。然而,目前尚不清楚,
细胞外基质(ECM)影响这些病理过程。该研究计划将解决
这是通过探索动脉硬度的变化如何引起VSMC的行为,有助于心血管疾病的发生,
疾病具体来说,这项工作利用了初步数据,揭示了蛋白生存素是一个关键,
刚性介导的VSMC增殖和迁移的调节剂和动脉硬化的效应物
和重塑。使用小鼠和人类VSMCs,我们将首先探讨血管ECM硬度如何影响血管的弹性。
在单细胞水平(早期)影响VSMC迁移、增殖和染色质组织
第二,确定病理性ECM硬度如何驱动新生内膜
形成,改变体外VSMC的局部机械环境(疾病晚期
进展;目标2)。最后,我们将证实生存素在调节ECM产生和动脉粥样硬化中的作用。
刚度(体内动物模型;目标2)。这些目标将使用具有新的细胞培养物的3D细胞培养来实现。
体外猪脱细胞主动脉ECM基纤维支架系统和小鼠损伤模型。简言之,
将从小鼠和人羊膜分离的VSMC培养在不同的纳米纤维支架上。
模拟身体正常和病理条件的硬度和结构。的VSMC
将使用先进的显微镜分析对病理性ECM硬度的反应,
体外细胞/核结构和生物力学特性的变化,以及RNA和蛋白质的变化。
将在单细胞水平评估表达。最后,动脉僵硬度和VSMC功能将
在损伤小鼠的完整动脉中研究;解剖组织的组织学和生物化学分析将在
在动脉硬化已被动脉损伤、药物治疗或遗传操纵后进行
突变。该项目将首次研究分子和生物物理机制,
生存素(i)介导刚度敏感性VSMC功能,(ii)促进新生内膜形成,
硬化,揭示了VSMCs中生存素生物学的一个全新方面,
动脉僵硬总的来说,这个建议是独一无二的,它能够确定潜在的新的治疗靶点
治疗心血管疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongho Bae其他文献
Yongho Bae的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongho Bae', 18)}}的其他基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10683796 - 财政年份:2022
- 资助金额:
$ 58.84万 - 项目类别:
相似海外基金
Mechanical sensing mechanism of abnormal cell clusters by surrounding normal cells
周围正常细胞对异常细胞簇的机械传感机制
- 批准号:
20K20189 - 财政年份:2020
- 资助金额:
$ 58.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rvb1 and Rvb2 are physically and functionally connected during normal and abnormal cell growth
Rvb1 和 Rvb2 在正常和异常细胞生长过程中在物理和功能上相连
- 批准号:
352398 - 财政年份:2016
- 资助金额:
$ 58.84万 - 项目类别:
"Born to be Bad": Is Abnormal Cell Mobility Already Present At Initiation?
“生来就是坏的”:异常的细胞迁移性是否在开始时就已经存在?
- 批准号:
8686657 - 财政年份:2014
- 资助金额:
$ 58.84万 - 项目类别:
Molecular mechanisms of abnormal cell proliferation in acute lymphoblastic leukemia of Down syndrome
唐氏综合征急性淋巴细胞白血病细胞异常增殖的分子机制
- 批准号:
23591527 - 财政年份:2011
- 资助金额:
$ 58.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of abnormal cell polarity in brain tumor cells
脑肿瘤细胞异常细胞极性分析
- 批准号:
21591887 - 财政年份:2009
- 资助金额:
$ 58.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of abnormal cell proliferation in transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome
唐氏综合症短暂性骨髓增生性疾病和急性巨核细胞白血病细胞异常增殖的分子机制
- 批准号:
20591241 - 财政年份:2008
- 资助金额:
$ 58.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of cell adhesion signaling in the abnormal cell polarization of cancer cells
细胞粘附信号在癌细胞异常细胞极化中的作用
- 批准号:
17014055 - 财政年份:2005
- 资助金额:
$ 58.84万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Creation and analysis of animal model monitoring abnormal cell replication
监测异常细胞复制的动物模型的创建和分析
- 批准号:
16380194 - 财政年份:2004
- 资助金额:
$ 58.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cl^-homeostasis failure and abnormal cell migration by endocrine disruptor cause damage to nervous system
内分泌干扰物导致的Cl^-稳态失灵和异常细胞迁移导致神经系统损伤
- 批准号:
15590207 - 财政年份:2003
- 资助金额:
$ 58.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ROLES OF PLEIOTROPHIN IN NORMAL AND ABNORMAL CELL GROWTH
多效素在正常和异常细胞生长中的作用
- 批准号:
2683586 - 财政年份:1995
- 资助金额:
$ 58.84万 - 项目类别: