New Developments in Regression Discontinuity Designs: Covariates Adjustment and Coverage Optimal Inference
不连续性回归设计的新进展:协变量调整和覆盖最优推理
基本信息
- 批准号:21K01419
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project proposes a novel approach to incorporate covariates in regression discontinuity (RD) designs. It represents the covariate balance condition as over-identifying moment restrictions. The empirical likelihood (EL) RD estimator efficiently incorporates the information from covariate balance and has an asymptotic variance no larger than that of the standard estimator without covariates. This project then proposes a robust corrected EL confidence set which achieves a faster coverage error decay rate. The coverage accuracy of the proposed confidence interval is automatically robust against slight perturbation to the covariate balance condition, which may happen in cases such as data contamination and misspecified “unaffected” outcomes used as covariates. This project also propose a way to conduct sensitivity analysis in the bandwidth choice when the researcher wants to use regression discontinuity with covariate adjustment. This project conducts Monte Carlo simulations to assess the finite-sample performance of the proposed inference method and then applies it to a real dataset.
本项目提出了一种新的方法,将协变量纳入回归不连续(RD)设计。它将协变量平衡条件表示为过度识别力矩限制。经验似然(EL) RD估计量有效地结合了协变量平衡信息,其渐近方差不大于不含协变量的标准估计量。然后,该项目提出了一个鲁棒修正的EL置信集,该置信集实现了更快的覆盖错误衰减率。所提出的置信区间的覆盖精度对协变量平衡条件的轻微扰动具有自动鲁棒性,这可能发生在数据污染和使用协变量的错误指定的“未受影响”结果等情况下。本课题还提出了当研究者希望使用回归不连续与协变量平差时,在带宽选择中进行敏感性分析的方法。本项目通过蒙特卡罗模拟来评估所提出的推理方法的有限样本性能,然后将其应用于真实数据集。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation and inference on treatment effects under treatment-based sampling designs
基于治疗的抽样设计对治疗效果的估计和推断
- DOI:10.1093/ectj/utac008
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Song Kyungchul;Yu Zhengfei
- 通讯作者:Yu Zhengfei
Empirical Likelihood Covariate Adjustment for Regression Discontinuity Designs
- DOI:
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Jun Ma;Zhengfei Yu
- 通讯作者:Jun Ma;Zhengfei Yu
SIMPLE SEMIPARAMETRIC ESTIMATION OF ORDERED RESPONSE MODELS
有序响应模型的简单半参数估计
- DOI:10.1017/s0266466622000317
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Liu Ruixuan;Yu Zhengfei
- 通讯作者:Yu Zhengfei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YU ZHENGFEI其他文献
YU ZHENGFEI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YU ZHENGFEI', 18)}}的其他基金
A sample selection model with a monotone selection correction function
具有单调选择校正功能的样本选择模型
- 批准号:
19K13666 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
相似海外基金
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Extended empirical likelihood
扩展的经验可能性
- 批准号:
RGPIN-2016-03804 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Extended empirical likelihood
扩展的经验可能性
- 批准号:
RGPIN-2016-03804 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Empirical Likelihood: Data Analysis Tools with Applications in Econometrics
贝叶斯经验似然:数据分析工具在计量经济学中的应用
- 批准号:
1921523 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Empirical likelihood, smoothed likelihood, and their applications
经验似然、平滑似然及其应用
- 批准号:
RGPIN-2015-06592 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




