Extended empirical likelihood
扩展的经验可能性
基本信息
- 批准号:RGPIN-2016-03804
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The empirical likelihood method (Owen, 2001) is a powerful non-parametric method of statistical inference with many applications. However, the empirical likelihood confidence region suffers from an under-coverage problem in that its coverage probability tends to be lower than the nominal level. The problem is particularly serious in small sample and multidimensional situations. It is partly due to the rate at which the empirical likelihood statistic converges to the limiting chi-square random variable, and partly due to the convex hull constraint embedded in the formulation of the empirical likelihood (Tsao, 2013). Existing methods for the under-coverage problem can be roughly divided into two types: those aimed at increasing the rate of convergence and those targeting the convex hull constraint. The extended empirical likelihood of Tsao (2013) and Tsao and Wu (2013) is in the latter category. It is motivated by geometrically expanding the original empirical likelihood confidence regions while preserving their data driven shape. It is a leading method for dealing with the under-coverage problem.The primary objective of this proposal is to thoroughly study the extended empirical likelihood method through its key component, the expansion factor of the underlying composite similarity mapping, in order to strengthen its theoretical foundation and further improve its already impressive accuracy. To achieve this objective, my research will focus on identifying the optimal expansion factor through understanding its dependence on the sample size, higher moments of the underlying distribution and the dimension of the parameter vector.The secondary objective of this proposal is to work on several related projects concerning the extended empirical likelihood. These are [1] finding new applications of this method, [2] simplifying its theory and computation, and [3] studying its asymptotic behavior when the dimension of the data increases with the sample size. The impact of this research will be significant. Findings related to the primary objective will put the extended empirical likelihood method on a sound theoretical footing and substantially improve its accuracy. Results concerning the secondary objective will [i] bring more accurate inference to empirical likelihood applications that previously use the original empirical likelihood, [ii] make the method easier to use and applicable to a wider range of problems, and [iii] make it possible to apply the method to high dimensional data which is an important topic in Big Data analysis.
经验似然方法(Owen,2001)是一种功能强大的非参数统计推断方法,具有许多应用。然而,经验似然置信区域遭受覆盖不足的问题,因为其覆盖概率往往低于名义水平。在小样本和多层面的情况下,这个问题尤其严重。这部分是由于经验似然统计量收敛到极限卡方随机变量的速率,部分是由于经验似然公式中嵌入的凸船体约束(Tsao,2013)。现有的欠覆盖问题的方法可以大致分为两类:旨在提高收敛速度的方法和针对凸船体约束的方法。Tsao(2013)和Tsao and Wu(2013)的扩展经验似然性属于后一类。它的动机是几何扩展原始的经验似然置信区域,同时保持其数据驱动的形状。本提案的主要目的是通过扩展经验似然法的关键组成部分--基础复合相似映射的扩展因子,对扩展经验似然法进行深入研究,以加强其理论基础,进一步提高其已经令人印象深刻的精度。为了实现这一目标,我的研究将集中在确定最佳的扩展因子,通过了解其依赖于样本大小,高阶矩的潜在分布和参数向量的维数。这个建议的第二个目标是工作在几个相关的项目有关的扩展经验似然。这些是[1]寻找这种方法的新应用,[2]简化其理论和计算,[3]研究其渐近行为时,数据的维数增加的样本容量。这项研究的影响将是巨大的。与主要目标相关的调查结果将把扩展的经验似然法建立在一个良好的理论基础上,并大大提高其准确性。关于次要目标的结果将[i]为先前使用原始经验似然的经验似然应用带来更准确的推断,[ii]使该方法更易于使用并适用于更广泛的问题,[iii]使该方法能够应用于高维数据,这是大数据分析中的一个重要主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsao, Min其他文献
Evidence of decadal climate prediction skill resulting from changes in anthropogenic forcing
- DOI:
10.1175/jcli3912.1 - 发表时间:
2006-10-15 - 期刊:
- 影响因子:4.9
- 作者:
Lee, Terry C. K.;Zwiers, Francis W.;Tsao, Min - 通讯作者:
Tsao, Min
Random effects mixture models for clustering electrical load series
- DOI:
10.1111/j.1467-9892.2010.00677.x - 发表时间:
2010-11-01 - 期刊:
- 影响因子:0.9
- 作者:
Coke, Geoffrey;Tsao, Min - 通讯作者:
Tsao, Min
Tsao, Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsao, Min', 18)}}的其他基金
Extended empirical likelihood
扩展的经验可能性
- 批准号:
RGPIN-2016-03804 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Extended empirical likelihood
扩展的经验可能性
- 批准号:
RGPIN-2016-03804 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Extended empirical likelihood
扩展的经验可能性
- 批准号:
RGPIN-2016-03804 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Extended empirical likelihood
扩展的经验可能性
- 批准号:
RGPIN-2016-03804 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood methods and statistical applications in climate studies
气候研究中的经验似然方法和统计应用
- 批准号:
194404-2011 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood methods and statistical applications in climate studies
气候研究中的经验似然方法和统计应用
- 批准号:
194404-2011 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood methods and statistical applications in climate studies
气候研究中的经验似然方法和统计应用
- 批准号:
194404-2011 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood methods and statistical applications in climate studies
气候研究中的经验似然方法和统计应用
- 批准号:
194404-2011 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood methods and statistical applications in climate studies
气候研究中的经验似然方法和统计应用
- 批准号:
194404-2011 - 财政年份:2011
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood: theory and applications
经验似然:理论与应用
- 批准号:
194404-2006 - 财政年份:2010
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
New Developments in Regression Discontinuity Designs: Covariates Adjustment and Coverage Optimal Inference
不连续性回归设计的新进展:协变量调整和覆盖最优推理
- 批准号:
21K01419 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extended empirical likelihood
扩展的经验可能性
- 批准号:
RGPIN-2016-03804 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10581591 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Co-Heteroscedasticity Models: Empirical Assessment and Computational Methods
协同异方差模型:经验评估和计算方法
- 批准号:
19K01588 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)