特異性を持つ確率微分方程式の解析

具有奇异性的随机微分方程分析

基本信息

  • 批准号:
    21K03272
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

CME+分布の密度関数に関する研究を行なった。CME+分布とは非負の無限分解可能分布で、レヴィ測度が絶対連続で、その密度関数が完全単調関数であるものである。CME+分布はBondesson族に属する分布と呼ばれることもある。一次元の一般化された拡散過程の初到達時刻や、逆局所時間の分布はCME+分布であることが知られている。昨年度に、山里眞氏(琉球大学)と竹内敦司氏(東京女子大)との共同研究で、CME+分布の密度関数の時空間に関する有界性、および時間発展させた際の減衰の速さを調べたが、この減衰の速さはあまり精度が良いものではなかった。本年度は、山里眞氏(琉球大学)と竹内敦司氏(東京女子大)と、より精度の高い評価を考案した。新たに得られた評価では、正側安定分布では最適な速さではないものの、ガンマ増加レヴィ過程の場合は最適な減衰の速さになることが分かった。エレファントランダムウォークの極限定理に関する研究も行った。エレファントランダムウォークは、Schutz and Trimper(2004)により提案された模型で、過去の自分の歩みを記憶するランダムウォークの一つである。近年、多くの研究者たちにより研究がなされている。特に記憶の効果を表すパラメータpが、時間発展させた場合のエレファントランダムウォークの挙動にどのような影響を与えるかが、この模型の研究の中心的な話題になっている。超拡散的(pが1/2より大きい場合で、過去の歩みと同じ行動を取ろうとする傾向が強い)である場合は、スケール変換を施したエレファントランダムウォークがある確率変数に収束することが知られている。この極限との誤差について、中心極限定理が成り立つことが知られている(Kubota and Takei(2019)). 本年度は、この中心極限定理についてのモーメント収束の速さを調べた。特に、2次モーメント、および3次モーメントでの収束の速さを具体的に計算することができた。
CME+ Distribution Density Off Number Research and Development. CME+ distribution is a non-negative infinite decomposition of possible distributions, a measure is a perfect combination, and a density close number is a complete single adjustment number. CME+ distributionはBondesson clanにgenusするdistributionとHUばれることもある. The generalization of one dimension means the initial arrival time of the dispersion process and the distribution of the inverse position time. The distribution of CME+distribution means the knowledge of the time. Last year, Yamazato Shinji (University of the Ryukyus) and Takeuchi Atsushi (Tokyo Women's University) jointly researched the time and space parameters of CME+ distribution density The bounded nature of the timeが、この attenuation のspeed さはあまり precision が好いものではなかった. This year, Yamazato Shinji (University of the Ryukyus), Takeuchi Atsushi (Tokyo Women's University), and the high-precision evaluation of the exams.新たに得られた综合価では、positive side stable distribution ではoptimal speed さではないものの、 The process of ガンマincrease and レヴィ is the most suitable occasion and the speed of な attenuation is the same.エレファントランダムウォークのlimit theorem に关する Research も行った.エレファントランダムウォークは, Schutz and Trimper(2004)によりproposalされたmodelで、past self-divisionの歩みをMemoryするランダムウォークの一つである. In recent years, many researchers have been studying がなされている.特にMemory EffectをTable すパラメータpが、Time Development させたoccasion のエレファントランダムウォークの挙动にどのような Impact を and えるかが, このmodelのResearchのcenter's topic になっている. Super loose (pが1/2より大きいoccasionで、pastの歩みと同じactionをtakingろうとする tendenciesがstrongい)である occasionは、スケール変change を时したエレファントランダムウォークがあるThe accuracy is high and the number is closed. することが知られている.このLimit とのError について, Central Limit Theorem が成り立つことが知られている (Kubota and Takei (2019)). This year's central limit theorem is the central limit theorem of this year. Special に, 2 times モーメント, および 3 times モーメントでの close のspeed さを specific に calculation することができた.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elephant random walk に対する中心極限定理におけるモーメント収束の速さについて
关于大象随机游走中心极限定理中矩收敛的速度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shoot Osaka;Masato Takei;竹居正登;竹居正登;竹居正登;林正史,大城壮,竹居正登
  • 通讯作者:
    林正史,大城壮,竹居正登
エレファントランダムウォークの高次モーメントの漸近挙動について
大象随机游走高阶矩的渐近行为
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Jaros;T. Kusano and T. Tanigawa;林 正史
  • 通讯作者:
    林 正史
Rate of moment convergence in the central limit theorem for the elephant random walk
大象随机游走中心极限定理的矩收敛率
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

林 正史其他文献

林 正史的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

無限次元確率解析による漸近解析の基礎理論
使用无限维随机分析的渐近分析基本理论
  • 批准号:
    23K28044
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
確率解析的手法による場の量子論の非摂動的スペクトル解析と準古典近似
使用随机分析方法的量子场论的非微扰谱分析和准经典近似
  • 批准号:
    23K20217
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
繰り込みを伴う方程式と確率解析
方程和重整化随机分析
  • 批准号:
    23K20801
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
動的ランダム行列に付随する非衝突固有値過程の確率解析
与动态随机矩阵相关的非碰撞特征值过程的随机分析
  • 批准号:
    24K16940
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
確率解析の新展開
概率分析的新进展
  • 批准号:
    23K20216
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
レヴナーの方法に基づく平面ツリーの確率解析・幾何
基于Levner方法的平面树的随机分析和几何
  • 批准号:
    24K16935
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
高次元ファイナンスモデルに対する確率解析とディープラーニングによるアプローチ
使用随机分析和深度学习的高维金融模型方法
  • 批准号:
    22KJ3223
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
幾何解析の視点を融合した無限次元空間上の確率解析の新展開
结合几何分析视角无限维空间随机分析新进展
  • 批准号:
    23K03155
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Frameworks: Scalable Performance and Accuracy analysis for Distributed and Extreme-scale systems (SPADE)
协作研究:框架:分布式和超大规模系统的可扩展性能和准确性分析 (SPADE)
  • 批准号:
    2311707
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Scalable Performance and Accuracy analysis for Distributed and Extreme-scale systems (SPADE)
协作研究:框架:分布式和超大规模系统的可扩展性能和准确性分析 (SPADE)
  • 批准号:
    2311708
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了