New perspectives for canonical dimension

规范维度的新视角

基本信息

  • 批准号:
    298978788
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Finding rational points on an algebraic variety amounts to finding solutions of systems of polynomials equations with coefficients in a given field. Many questions concerning quadratic forms, central simple algebras, or more generally Galois cohomology, may be formulated as whether a certain projective homogeneous variety under a linear algebraic group has a rational point or not. Canonical dimension measures how far a variety is from having a rational point, and thus allows finer distinctions between varieties than the mere consideration of the existence of rational points. Accordingly, this notion provides valuable informations on quadratic forms and central simple algebras. Until now, the concept of canonical dimension has been mostly used in the context of projective homogeneous varieties. Its computation often involves tools inspired by algebraic topology, in particular cohomological operations and motivic decompositions.This project is organised along two directions: (a) Use canonical dimension and the associated methods in new contexts, outside the realm of linear algebraic groups. These techniques may be useful whenever one is trying to find rational points on an algebraic variety, a situation which is of course not limited to the study of projective homogeneous varieties, but in fact corresponds to a large part of arithmetic geometry.(b) Use methods coming from other parts of algebraic geometry to compute the canonical dimension of projective homogeneous varieties. This includes techniques from classical algebraic geometry, which are routinely used in arithmetic geometry, and Chow-Witt-theoretic methods, which are currently used for the study of projective modules.Explicit problems that will be investigated are: (1) Does the action of a finite p-group on the affine space over a field of characteristic different from p fix a rational point? (2) Compute the canonical dimension of the Severi-Brauer varieties. (3) Obtain new informations on the splitting patterns of quadratic forms. (4) Prove a quadratic refinement of Serre's vanishing conjecture.
在一个代数簇上寻找有理点相当于在给定的域上寻找系数为多项式方程组的解。许多关于二次型、中心单代数或更一般的伽罗瓦上同调的问题,可以表述为线性代数群下的某个投射齐次簇是否有有理点。典范维数度量了一个变种离有一个合理点的距离,因此比仅仅考虑合理点的存在允许变种之间更精细的区分。相应地,这个概念提供了关于二次型和中心单代数的有价值的信息。到目前为止,标准维数的概念主要用于投射齐次簇的上下文中。它的计算通常涉及受代数拓扑启发的工具,特别是上同调运算和motivic分解。这个项目沿着沿着两个方向组织: (a)在线性代数群领域之外的新环境中使用规范维数和相关方法。这些技术可能是有用的,每当一个试图找到合理的点上的代数品种,这种情况当然不限于研究射影齐次品种,但实际上对应于很大一部分算术几何。(b)利用代数几何中其他部分的方法计算射影齐次簇的标准维数。这包括从经典代数几何,这是经常使用的算术几何,和Chow-Witt理论的方法,这是目前用于研究投射模的技术。明确的问题,将被调查: (1)有限p-群在特征不同于p的域上的仿射空间上的作用能固定一个有理点吗? (2)计算Severi-Brauer簇的标准维数。 (3)获得二次型分裂模式的新信息。 (4)证明塞尔消失猜想的二次精化。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diagonalisable $p$-groups cannot fix exactly one point on projective varieties
对角化 $p$ 群无法精确确定射影簇上的一个点
  • DOI:
    10.1090/jag/749
  • 发表时间:
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Olivier Haution
  • 通讯作者:
    Olivier Haution
On rational fixed points of finite group actions on the affine space
仿射空间上有限群作用的有理不动点
  • DOI:
    10.1090/tran/7184
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Haution
  • 通讯作者:
    Olivier Haution
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Olivier Haution其他文献

Privatdozent Dr. Olivier Haution的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Olivier Haution', 18)}}的其他基金

Canonical dimension and actions of finite groups on algebraic varieties
代数簇上有限群的规范维数和作用
  • 批准号:
    498240045
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants
Intersection theory and cobordism with a quadratic twist
相交理论和二次扭曲的协边
  • 批准号:
    437860477
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Canonical dimension and actions of finite groups on algebraic varieties
代数簇上有限群的规范维数和作用
  • 批准号:
    398748801
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships

相似海外基金

The syntax of nominal copular clauses: theoretical and empirical perspectives
名词系动词从句的语法:理论和实证视角
  • 批准号:
    AH/Y007492/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Attitudes towards sustainable plant-based diets in Japan: Business and consumer perspectives
日本对可持续植物性饮食的态度:企业和消费者的观点
  • 批准号:
    24K16414
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Global Perspectives of the Short-term Association between Suicide and Nighttime Excess Heat during Tropical Nights
热带夜晚自杀与夜间酷热之间短期关联的全球视角
  • 批准号:
    24K10701
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reconceptualizing Well-being to Foster a Sustainable Society through Indigenous and Youth Perspectives from the Global South
从南半球原住民和青年的角度重新定义福祉,促进可持续发展的社会
  • 批准号:
    24K03155
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Black British History: Local Perspectives
英国黑人历史:当地视角
  • 批准号:
    AH/Y000765/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
  • 批准号:
    EP/X030989/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
The development and evaluation of a theatrical method to take others' perspectives: parent-child communication
换位思考的戏剧方法的发展与评价:亲子沟通
  • 批准号:
    23KJ2239
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reframing arrival: Transnational perspectives on perceptions, governance and practices - REFRAME.
重构到来:关于认知、治理和实践的跨国视角 - REFRAME。
  • 批准号:
    AH/Y00759X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
  • 批准号:
    2338091
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了