Time-resolved EPR for probing ordering in conjugated polymers and primary processes of charge generation in organic electronic devices
时间分辨 EPR 用于探测共轭聚合物的有序性和有机电子器件中电荷产生的主要过程
基本信息
- 批准号:300369943
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Organic semiconductors are used in a large number of applications ranging from light-emitting diodes (OLEDs) and transistors (OFETs) to solar cells (OSCs). Their advantage over conventional inorganic semiconductors is the low-cost and nearly endless flexibility in tailoring the molecules used. Generation, separation, and transport of charges are crucial aspects that need further investigation to develop efficient organic electronics. Morphology of the involved polymers is one of the most crucial aspects for the efficiency of organic electronic devices due to the existing strong structure-function relationship. Electron paramagnetic resonance (EPR) spectroscopy is nearly ideally suited to investigate conjugated polymers used for organic electronics, as most of the light-induced states are paramagnetic and can therefore be detected.The focus of this project is on investigating morphology and ordering in conjugated polymers and light-induced primary processes in organic electronic devices by time-resolved EPR spectroscopy. The microscopic processes are correlated with both, the morphology of the polymers and the macroscopic device efficiency. Due to the strong structure-function relationship, it is crucially important to control the sample morphology. Only if it is comparable to that in organic electronic devices, spectroscopic results can be correlated to device characteristics.In a systematic approach, the materials used for organic electronics will be investigated spectroscopically - starting out with the building blocks and continuing via oligo- and polymers to the blends of donor and acceptors materials used in the actual devices. To correlate morphology, microscopic processes and macroscopic device efficiency, an EPR setup to investigate whole organic electronic devices (OFETs, OSCs) will be built. Analysis of spin-polarised EPR spectra will be facilitated by developing an easy-to-use framework of simulation programs covering the different scenarios.
有机半导体广泛应用于从发光二极管(oled)和晶体管(ofet)到太阳能电池(OSCs)的各种应用中。与传统无机半导体相比,它们的优势在于成本低,而且在定制所使用的分子时几乎具有无限的灵活性。电荷的产生、分离和传输是开发高效有机电子学需要进一步研究的关键方面。聚合物的形态是影响有机电子器件效率的最关键因素之一,因为它们之间存在着强烈的结构-功能关系。电子顺磁共振(EPR)光谱学几乎非常适合研究用于有机电子学的共轭聚合物,因为大多数光诱导态是顺磁性的,因此可以被检测到。本项目的重点是通过时间分辨EPR光谱研究共轭聚合物和有机电子器件中光诱导初级过程的形态和顺序。微观过程与聚合物的形态和宏观器件效率相关。由于结构-功能关系强,因此控制样品的形貌至关重要。只有在与有机电子器件相比较的情况下,光谱结果才能与器件特性相关联。在一个系统的方法中,用于有机电子的材料将被光谱研究-从构建块开始,通过低聚物和聚合物继续到实际设备中使用的供体和受体材料的混合物。为了将形态学、微观过程和宏观器件效率联系起来,将建立一个EPR装置来研究整个有机电子器件(ofet, OSCs)。通过开发涵盖不同场景的易于使用的模拟程序框架,将促进自旋极化EPR光谱的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Till Biskup其他文献
Privatdozent Dr. Till Biskup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Privatdozent Dr. Till Biskup', 18)}}的其他基金
Photoinduced Radical Pairs in Cryptochromes: Possible Candidates for the Magnetic Compass of Migratory Birds
隐花色素中的光致自由基对:候鸟磁罗盘的可能候选者
- 批准号:
181762906 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Fellowships
相似海外基金
Time Resolved EPR Studies of Natural and Artificial Photosynthesis
自然和人工光合作用的时间分辨 EPR 研究
- 批准号:
RGPIN-2015-04021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Time Resolved EPR Studies of Natural and Artificial Photosynthesis
自然和人工光合作用的时间分辨 EPR 研究
- 批准号:
RGPIN-2015-04021 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Time Resolved EPR Studies of Natural and Artificial Photosynthesis
自然和人工光合作用的时间分辨 EPR 研究
- 批准号:
RGPIN-2015-04021 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Time Resolved EPR Studies of Natural and Artificial Photosynthesis
自然和人工光合作用的时间分辨 EPR 研究
- 批准号:
RGPIN-2015-04021 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Time-resolved conformational changes of proteins by very high frequency Gd3+ EPR
通过甚高频 Gd3 EPR 实现蛋白质的时间分辨构象变化
- 批准号:
1617025 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Time Resolved EPR Studies of Natural and Artificial Photosynthesis
自然和人工光合作用的时间分辨 EPR 研究
- 批准号:
RGPIN-2015-04021 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Time Resolved EPR Studies of Natural and Artificial Photosynthesis
自然和人工光合作用的时间分辨 EPR 研究
- 批准号:
RGPIN-2015-04021 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Conformational kinetics in diflavoproteins: a new approach using photo-initiated time-resolved continuous flow EPR spectroscopy.
双黄素蛋白的构象动力学:一种使用光引发时间分辨连续流 EPR 光谱的新方法。
- 批准号:
BB/J011657/1 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Training Grant
Time resolved EPR studies of electron transfer in Photosynthesis
光合作用中电子转移的时间分辨 EPR 研究
- 批准号:
227442-2005 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Time resolved EPR studies of electron transfer in Photosynthesis
光合作用中电子转移的时间分辨 EPR 研究
- 批准号:
227442-2005 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual