Integration of optically pumped magnetometers and microfluidics for the determination of the magnetic moments of single micro-particles (Micromagnetic Moments)

光泵磁力计和微流体的集成用于确定单个微粒的磁矩(微磁矩)

基本信息

项目摘要

Magnetotactic bacteria (MTB) produce magnetic nano-crystals, arranged in chains and called magnetosomes. Their perfection outperforms abiotically produced nanoparticles, making them interesting for several technical applications. For the MTB themselves the magnetosomes serve for the orientation within the Earth magnetic field. Size, arrangement, und magnetization of the magnetosomes depend on various influencing factors of their environment. The investigation of these interrelations is of growing interest, because the microbes play an important role within the global biogeochemical cycles. For the characterization of MTB as well as biogenically produced magnetosomes the knowledge of their individual magnetic moments would be of great benefit. To gain this individual property within an ensemble of many MTB, no method exists up to now. Hence, in this project a possibility shall be created, where a larger quantity of magnetosomes or MTB (more generally called micro-particles) can be characterized individually with respect to their magnetization with high throughput. For that purpose optically pumped magnetometers (OPM) and micro-fluidic elements are to be integrated in a common chip. Due to the small distance between the bypassing magnetic micro-particles and the alkali vapor cells achievable with this integration, for the first time the determination of magnetic moments of the order of m = 1x10exp(-15) Am^2 will be possible (despite the miniaturized vapor cells, which are needed to resolve individual micro-particles). In order to gain the corresponding magnetic field resolution, several alkali vapor cells will be integrated together with the microfluidic canal, what serves for the elimination of noise sources and improvement of the signal quality. Furthermore, the physical working mode of the OPM has to be developed and fit to the technical situation in the integrated arrangement.
趋磁细菌(MTB)产生磁性纳米晶体,排列成链,称为磁小体。它们的完美性能超过了非生物产生的纳米颗粒,使它们在几个技术应用中变得有趣。对于山地车本身,磁小体在地球磁场中起着定向作用。磁小体的大小、排列和磁化强度取决于其所处环境的各种影响因素。这些相互关系的调查是越来越感兴趣的,因为微生物在全球生物地球化学循环中发挥着重要作用。对于MTB以及生物产生的磁小体的表征,了解它们各自的磁矩将是非常有益的。为了在许多MTB的集合内获得这种单独的性质,到目前为止还没有方法存在。因此,在该项目中,将创造一种可能性,其中可以以高通量单独表征更大量的磁小体或MTB(更一般地称为微粒)的磁化。为此目的,光泵磁力计(OPM)和微流体元件将被集成在共同的芯片中。由于旁路磁性微粒和碱蒸气室之间的距离很小,因此首次可以测定m = 1x 10 exp(-15)Am ^2量级的磁矩(尽管需要微型化的蒸气室来分辨单个微粒)。为了获得相应的磁场分辨率,将多个碱蒸气池与微流体通道集成在一起,这有助于消除噪声源和提高信号质量。此外,OPM的物理工作模式必须得到发展,并适合于综合安排中的技术情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Volkmar Schultze其他文献

Dr. Volkmar Schultze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

MEG-system with Optically Pumped Magnetometers (OPMs) (Teilfinanzierung)
配备光泵磁力计 (OPM) 的 MEG 系统(部分融资)
  • 批准号:
    527932280
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Whole-head optically-pumped room-temperature magnetoencephalography
全头光泵室温脑磁图
  • 批准号:
    LE230100150
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Realising the potential of magnetoencephalography (MEG) using Optically Pumped Magnetometers (OPMs)
使用光泵磁力计 (OPM) 实现脑磁图 (MEG) 的潜力
  • 批准号:
    MR/X012263/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigating neural oscillations and functional networks in toddlers with and without autism using a new 'wearable MEG' system
使用新的“可穿戴 MEG”系统研究患有和未患有自闭症的幼儿的神经振荡和功能网络
  • 批准号:
    473706
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship Programs
Development of low-cost optically pumped magnetometer system for fetal applications
开发用于胎儿应用的低成本光泵磁力计系统
  • 批准号:
    10589808
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Emerging brain networks in infants and toddlers with autism spectrum disorder using novel OPM-based MEG technology.
使用基于 OPM 的新型 MEG 技术开发患有自闭症谱系障碍的婴儿和幼儿的新兴大脑网络。
  • 批准号:
    473721
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship Programs
Development of low-cost optically pumped magnetometer system for fetal applications
开发用于胎儿应用的低成本光泵磁力计系统
  • 批准号:
    10467588
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Characterising brain network dynamics in very young children with autism using OPM-based MEG
使用基于 OPM 的 MEG 表征自闭症幼儿的大脑网络动态
  • 批准号:
    445556
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
  • 批准号:
    2020015
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigating the Use of Optically Pumped Magnetometers in Conjunction with Electrical Impedance Tomography to Image Brain Activity
研究使用光泵磁力计与电阻抗断层扫描相结合对大脑活动进行成像
  • 批准号:
    2407242
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了