Computational and phantom-based optimization of dc neuronal current imaging (dcNCI) with ultra-low-field nuclear magnetic resonance (ULF NMR)

使用超低场核磁共振 (ULF NMR) 对直流神经元电流成像 (dcNCI) 进行计算和基于模型的优化

基本信息

项目摘要

This project forms a vital part in the further development and potential first time in vivo demonstration of neuronal current imaging (NCI) using ultra-low-field nuclear magnetic resonance (ULF NMR) by means of optimized NMR sequences. NCI is a new modality for imaging brain function, complementary, in terms of both spatial and temporal resolution, to other existing functional tools such as functional Magnetic Resonance Imaging (fMRI) and Electro-or Magnetoencephalography (EEG or MEG). NCI measures directly the influence of weak and localized (<1mm) magnetic fields due to neuronal currents in the brain on NMR signals and hence does not suffer from non-uniqueness. The neuronal magnetic field with their spatial and temporal pattern will provide the natural contrast to localize neuronal activity.We focus on imaging long lasting brain activities (~s), coining the modality dcNCI, by using the latest generation of ULF-NMR instrumentation. The ULF-regime (~µT) is superior over the high field region (~T) as it eliminates susceptibility artefacts, a major obstacle in the demonstration of in vivo NCI. The dipole strength and position of somatosensory evoked, long lasting brain activities were estimated by MEG on volunteers and were reproduced with simplified phantoms containing a single current dipole. At PTB, the simplified phantom was used for initial NMR measurement using a 1D phase encoding scheme. This dcNCI feasibility study achieved the detection of small dipolar currents of about 150 nAm, about a factor 3 higher than the intensity of corresponding brain activities. This illustrated the need of substantial improvements in terms of Contrast-to-Noise ratio (CNR).Here, we will initially develop a framework based on computational electromagnetic models capable of simulating both the magnetic fields produced by the NMR coils and the phantom containing the single dipolar source. Numerical simulations of dcNCI using the 1D phase encoding scheme can be obtained by solving the Bloch equations using as input validated field distributions generated by both the NMR coil setup and the dipolar source. It is an integral part of this project to validate the computational model by MEG and ULF-NMR measurements.The second part of the project consists of the construction of more complex phantoms with additional dipolar sources and their associated validated computational electromagnetic models. With this framework we will be able to optimize the sequence for dcNCI with ULF NMR to obtain maximum CNR to improve the sensitivity with regard to the minimum detectable dipole strength. Moreover, due to the availability of computational models of the human body, optimized dcNCI sequences will be numerically tested against extended dipoles within realistic brain models.The output of this project will be a versatile and validated simulation tool usable for predicting and optimizing sequences for dcNCI with ULF NMR with the prospect of its first in vivo demonstration.
该项目形成了进一步开发和潜在的第一次在体内演示的神经元电流成像(NCI)的重要组成部分,使用超低场核磁共振(ULF NMR)通过优化的NMR序列。NCI是一种新的脑功能成像模式,在空间和时间分辨率方面与其他现有的功能工具如功能性磁共振成像(fMRI)和脑电图或脑磁图(EEG或MEG)互补。NCI直接测量由于大脑中的神经元电流引起的弱和局部(<1 mm)磁场对NMR信号的影响,因此不会受到非唯一性的影响。神经元磁场及其空间和时间模式将提供自然对比以定位神经元活动。我们专注于使用最新一代的ULF-NMR仪器成像长持续的脑活动(~s),创造模态dcNCI。ULF方案(~μT)上级高场区域(~T),因为它消除了磁化率伪影,这是体内NCI证明的主要障碍。通过MEG对志愿者的躯体感觉诱发的、持久的脑活动的偶极子强度和位置进行估计,并且用包含单个电流偶极子的简化幻影再现。在PTB,简化体模用于使用1D相位编码方案的初始NMR测量。该dcNCI可行性研究实现了约150 nAm的小偶极电流的检测,约为相应脑活动强度的3倍。这说明需要在对比度噪声比(CNR)方面进行实质性改进。在这里,我们将首先开发一个基于计算电磁模型的框架,该模型能够模拟NMR线圈和包含单个偶极源的体模产生的磁场。使用1D相位编码方案的dcNCI的数值模拟可以通过使用由NMR线圈设置和偶极源两者生成的经验证的场分布作为输入来求解布洛赫方程来获得。通过MEG和ULF-NMR测量验证计算模型是该项目的一个组成部分。该项目的第二部分包括构建更复杂的具有额外偶极源的模型及其相关的验证计算电磁模型。有了这个框架,我们将能够优化序列的dcNCI与ULF NMR获得最大的CNR,以提高灵敏度方面的最小可检测的偶极强度。此外,由于人体的计算模型的可用性,优化的dcNCI序列将在现实的大脑models.The输出的扩展偶极子进行数值测试将是一个多功能的和验证的模拟工具,可用于预测和优化序列的dcNCI与超低频NMR与其第一次在体内演示的前景。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultra-sensitive SQUID Systems for Pulsed Fields—Degaussing Superconducting Pick-Up Coils
用于脉冲场的超灵敏 SQUID 系统 – 消磁超导拾波线圈
Ultra-sensitive SQUID instrumentation for MEG and NCI by ULF MRI
用于 MEG 和 NCI 的 ULF MRI 超灵敏 SQUID 仪器
An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device
  • DOI:
    10.1063/1.4976823
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    4
  • 作者:
    J. Storm;Peter Hommen;D. Drung;Rainer Korber
  • 通讯作者:
    J. Storm;Peter Hommen;D. Drung;Rainer Korber
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Rainer Körber, Ph.D.其他文献

Dr. Rainer Körber, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Rainer Körber, Ph.D.', 18)}}的其他基金

Metrology for ultra-low magnetic fields
超低磁场计量
  • 批准号:
    324668647
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Core Facilities
Multichannel single trial MEG of cortical population spikes – SPIKE MEG
皮质群峰值的多通道单试验 MEG – SPIKE MEG
  • 批准号:
    511192033
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    New Instrumentation for Research

相似国自然基金

理想逼近与模型结构
  • 批准号:
    11671069
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
理想逼近理论及其应用
  • 批准号:
    11301062
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Phantom黑洞及其可观测效应的研究
  • 批准号:
    11275065
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
同伦论中的对称性及相关课题
  • 批准号:
    19701032
  • 批准年份:
    1997
  • 资助金额:
    3.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluorescence lifetime-based tumor contrast enhancement using exogenous probes
使用外源探针进行基于荧光寿命的肿瘤对比度增强
  • 批准号:
    10775262
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Smartphone-based optical scanner to physiologically assess diabetic foot ulcers
基于智能手机的光学扫描仪可对糖尿病足溃疡进行生理评估
  • 批准号:
    10503651
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Smartphone-based optical scanner to physiologically assess diabetic foot ulcers
基于智能手机的光学扫描仪可对糖尿病足溃疡进行生理评估
  • 批准号:
    10680499
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Brain phantom generation by generative adversarial net (GAN) for AI-based emission tomography
通过生成对抗网络 (GAN) 生成脑模型,用于基于人工智能的发射断层扫描
  • 批准号:
    10466967
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
  • 批准号:
    10595030
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A Multipoint Injection Technology for Highly Efficient Convection-Enhanced Delivery of Gene-Based Therapeutics
用于基因治疗药物高效对流增强递送的多点注射技术
  • 批准号:
    10471044
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A Multipoint Injection Technology for Highly Efficient Convection-Enhanced Delivery of Gene-Based Therapeutics
用于基因治疗药物高效对流增强递送的多点注射技术
  • 批准号:
    10608114
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
  • 批准号:
    10435438
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Brain phantom generation by generative adversarial net (GAN) for AI-based emission tomography
通过生成对抗网络 (GAN) 生成脑模型,用于基于人工智能的发射断层扫描
  • 批准号:
    10293006
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A Multipoint Injection Technology for Highly Efficient Convection-Enhanced Delivery of Gene-Based Therapeutics
用于基因治疗药物高效对流增强递送的多点注射技术
  • 批准号:
    10374904
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了