A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging

基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像

基本信息

  • 批准号:
    10435438
  • 负责人:
  • 金额:
    $ 47.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Obesity is a significant and growing problem in the United States. Currently, 68.5% of the U.S. population is overweight, with approximately 37.7% of the overweight population being obese. The significant health problems associated with overweightedness and obesity, the “body habitus” of this population combined with the significant challenges in medical imaging of these individuals reduces the effectiveness of healthcare for this population. In ultrasound imaging, the quality of abdominal ultrasound exams are significantly affected by obesity. Fundamentally, an ultrasound image relies on acoustic propagation to a target, reflection, and then propagation back to the surface. The process of beamforming, which converts the surface measurement to an image, is sensitive to the low amplitude reflections from different tissue layers and tissue properties. Typically, the additional fat and connective tissue layers in obese patients can significantly degrade ultrasound image quality by introducing multi-path reverberation and phase aberration that obscure or distort these low amplitude reflections. However, due to the computational complexity of describing ultrasound propagation and reflection in heterogeneous media, beamformers currently rely on simplified models that do not describe the propagation physics directly. We propose a generational leap in how we approach ultrasound beamforming by using physically and anatomically realistic wave propagation models and measurements that can effectively harness the power of data-driven and rapidly evolving machine learning beamformers. A custom highly realistic simulation tool that we have developed will use acoustical maps of the fine structures in the human body based on photographic cryosections. This physics-based approach will allow us to develop high quality training data and to understand the physical mechanisms for image quality improvement. These simulations will be calibrated to ex vivo and in vivo human data to subsequently generate a large data set that can be used to train a machine- learning-based real-time beamformer. We will focus on two sources of image degradation which we have identified to be particularly deleterious: multipath reverberation and aberration of the focusing profile. The proposed neural network beamformer filters incoherent noise, such as multi-path reverberation, and corrects aberration in the radiofrequency channel signals. After training the beamformer and implementing it in real-time, a pilot human study in liver ultrasound imaging will be conducted to determine the improvement in image quality in high-body-mass index individuals, where diagnostic imaging is problematic due to image degradation. This technique is highly translatable to other clinical scenarios, varying from cardiac to transcranial to obstetric imaging, by changing the anatomical model. Furthermore, the physical concepts that will be extracted from the learned representation, can be used to improve the design process for ultrasound equipment, including transmit sequences, and transducers.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gianmarco Pinton其他文献

Gianmarco Pinton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gianmarco Pinton', 18)}}的其他基金

Lung-specific ultrasound beamforming for diagnostic imaging
用于诊断成像的肺部特异性超声波束形成
  • 批准号:
    10673127
  • 财政年份:
    2022
  • 资助金额:
    $ 47.36万
  • 项目类别:
Lung-specific ultrasound beamforming for diagnostic imaging
用于诊断成像的肺部特异性超声波束形成
  • 批准号:
    10440831
  • 财政年份:
    2022
  • 资助金额:
    $ 47.36万
  • 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
  • 批准号:
    10595030
  • 财政年份:
    2021
  • 资助金额:
    $ 47.36万
  • 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
  • 批准号:
    8863091
  • 财政年份:
    2015
  • 资助金额:
    $ 47.36万
  • 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
  • 批准号:
    9039163
  • 财政年份:
    2015
  • 资助金额:
    $ 47.36万
  • 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
  • 批准号:
    9253438
  • 财政年份:
    2015
  • 资助金额:
    $ 47.36万
  • 项目类别:

相似海外基金

Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
  • 批准号:
    2745747
  • 财政年份:
    2022
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
  • 批准号:
    10008166
  • 财政年份:
    2018
  • 资助金额:
    $ 47.36万
  • 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
  • 批准号:
    18K18364
  • 财政年份:
    2018
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
  • 批准号:
    1922800
  • 财政年份:
    2017
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
  • 批准号:
    EP/P013309/1
  • 财政年份:
    2017
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
  • 批准号:
    EP/P012434/1
  • 财政年份:
    2017
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
  • 批准号:
    16K12096
  • 财政年份:
    2016
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
  • 批准号:
    16K00715
  • 财政年份:
    2016
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
  • 批准号:
    453832-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
  • 批准号:
    453832-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了