Limiting Theories in Material Science: Mathematical derivation and Analysis

材料科学的极限理论:数学推导与分析

基本信息

  • 批准号:
    313878761
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Independent Junior Research Groups
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Recent technological advances have allowed for engineering of materials at ever decreasing scales toward broad applications, ultrathin films being one of the examples. The presence of different length scales often makes the numerical study of models in material science prohibitively expensive. Instead of treating them numerically one first studies them analytically to obtain some understanding of their solutions and then uses the acquired insight to pave the way for development of more effective numerical methods. Our goal is to rigorously analyze a few such problems. In the first part of the project we study the wrinkling patterns in compressed thin elastic sheets. In some situations the wrinkling could be non-uniform and the actual pattern shows branching. To understand wrinkling microstructure we consider a variational viewpoint, and identify and analytically study the next-order expansion of the energy (the subdominant energy) in the limit of vanishing sheet thickness. Within this framework we will study several physical situations, a model describing graphene nanoribbons being one of them. In the second part we study elliptic systems with random and rapidly oscillating coefficients, with the application to the model describing heterogeneous linearly-elastic materials in mind. Though the microscopic behavior could be quite complicated, due to stochastic cancellations the macroscopic behavior should be much simpler and deterministic, a process called homogenization. We will use PDE methods to study quantitative aspects of the stochastic homogenization for elliptic systems. The last area of research concerns behavior of compressible viscous fluids in domains with rough boundaries. Rather than study the problem in a rough domain, one poses the problem in a smooth domain where the roughness of the original boundary is reduced to an effective boundary law. Using the concept of relative energy inequality for dissipative solutions to the Navier-Stokes system our aim is to rigorously derive these effective boundary conditions and analyze the error one makes by taking this approach.
最近的技术进步使得材料工程在不断缩小的规模下走向广泛的应用,超薄膜就是其中一个例子。不同长度尺度的存在往往使材料科学模型的数值研究代价高昂。人们不是用数值方法来处理它们,而是首先用分析方法来研究它们,以获得对它们的解的一些理解,然后利用获得的洞察力为开发更有效的数值方法铺平道路。我们的目标是严谨地分析几个这样的问题。在项目的第一部分,我们研究了压缩弹性薄板的起皱模式。在某些情况下,褶皱可能是不均匀的,实际的图案显示出分支。为了理解起皱微结构,我们从变分的角度出发,识别并分析研究了在薄板厚度消失极限下能量的次阶扩展。在这个框架内,我们将研究几种物理情况,描述石墨烯纳米带的模型就是其中之一。在第二部分中,我们研究了具有随机和快速振荡系数的椭圆系统,并将其应用于描述非均质线弹性材料的模型。尽管微观行为可能相当复杂,但由于随机消去,宏观行为应该更简单和确定,这一过程称为均质化。我们将使用偏微分方程方法来研究椭圆系统随机均匀化的定量问题。最后一个研究领域涉及可压缩粘性流体在粗糙边界域中的行为。而不是在粗糙域研究问题,而是在光滑域提出问题,其中原始边界的粗糙度被简化为有效的边界律。利用Navier-Stokes系统耗散解的相对能量不等式的概念,我们的目的是严格推导这些有效的边界条件,并分析采用这种方法所产生的误差。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Peter Bella其他文献

Professor Dr. Peter Bella的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Peter Bella', 18)}}的其他基金

Robust structures in compliance minimization
合规性最小化的稳健结构
  • 批准号:
    441469601
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Translations between Type Theories
类型理论之间的翻译
  • 批准号:
    EP/Z000602/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Cognitive imprecision and ageing: experimental investigation of new theories of decision-making
认知不精确与衰老:新决策理论的实验研究
  • 批准号:
    24K00237
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
  • 批准号:
    2349052
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Evaluating Theories of Polymer Crystallization by Directly Calculating the Nucleation Barrier in a Polymer Melt
职业:通过直接计算聚合物熔体中的成核势垒来评估聚合物结晶理论
  • 批准号:
    2338690
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
RAPID: Antecedents and Consequences of Disaster-Related Conspiracy Theories
RAPID:灾难相关阴谋论的前因和后果
  • 批准号:
    2326644
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
  • 批准号:
    2331781
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
  • 批准号:
    23K13096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Testing alternative theories of gravity in strong gravitational field by searching for gravitational-wave polarization from compact binary coalescences
通过从致密双星聚结中寻找引力波偏振来测试强引力场中的替代引力理论
  • 批准号:
    22KJ1650
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum Simulation of Non-Equilibrium Processes in Quantum Field Theories
量子场论中非平衡过程的量子模拟
  • 批准号:
    22KJ0957
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了