ENS.VRSP: Efficient Neighborhood Search in Vehicle Routing and Scheduling
ENS.VRSP:车辆路径和调度中的高效邻域搜索
基本信息
- 批准号:315139873
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The intended project aims at generating new insights and developing new methods in the field of neighborhood search for vehicle-routingand scheduling problems (VRSP). VRSP can be described in a generic fashion as follows: Given a set of transportation requests and a fleet of vehicles, the task is to find a set of vehicle routes that fulfill all (or a selection) of the transportation requests with the given fleet at minimum cost. In particular, we have to decide which vehicle performs which requests in which order such that the resulting vehicle routes are feasible. It is strongly assumed that VRSP cannot be solved to optimality in a time that depends polynomially on the input size of the problem instance, i.e., they are NP-hard. Therefore, VRSP are frequently addressed by heuristic algorithms, which are distinguished into construction and improvement methods. Among the improvement methods, neighborhood searches play a major role: These methods iteratively and systematically modify a given solution in order to reach a better solution. Well-known examples of neighborhood searches are the 2-opt and the Lin-Kernighan method for solving the Traveling Salesman Problem. We believe that, despite the numerous publications on metaheuristics for VRSP, there is a strong need for additional research on the development and analysis of the basic components of neighborhood search. These basic components address fundamental aspects of neighborhood search, in particular, efficiently checking the feasibility and calculating the cost of the solutions modified by search moves as well as determining an appropriate order of search steps. To improve these components, we plan to combine concepts from the field of exact optimization (resources, resource extension functions) with modern approaches from the field of heuristics (granular search, time travel). This renders a cooperation between the proposers beneficial as their competence perfectly complements each other with regard to the intended research. The basic components are not restricted to specific methods or specific VRSP but are widely applicable. The intended insights are therefore strongly relevant: They allow for significant performance improvements of numerous different solution methods for a large number of practically and scientifically relevant problems.
该项目旨在产生新的见解和开发新的方法,在邻域搜索领域的车辆路由和调度问题(VRSP)。VRSP可以用通用的方式描述如下:给定一组运输请求和一个车队,任务是找到一组车辆路线,以最小的成本满足给定车队的所有(或选择)运输请求。特别是,我们必须决定哪辆车以何种顺序执行哪些请求,以便得到的车辆路线是可行的。强烈假设VRSP不能在多项式依赖于问题实例的输入大小的时间内被求解为最优,即,它们是NP难的。因此,VRSP问题经常采用启发式算法来解决,分为构造方法和改进方法。在这些改进方法中,邻域搜索起着重要的作用:这些方法迭代地和系统地修改给定的解,以达到更好的解。邻域搜索的著名例子是2-opt和用于解决旅行商问题的Lin-Kernighan方法。我们认为,尽管有许多出版物上的元搜索VRSP,有一个强烈的需求,额外的研究的发展和分析的基本组成部分的邻域搜索。这些基本组件解决了邻域搜索的基本方面,特别是,有效地检查可行性和计算由搜索移动修改的解决方案的成本,以及确定搜索步骤的适当顺序。为了改善这些组件,我们计划结合联合收割机的概念,从精确优化领域(资源,资源扩展功能)与现代的方法,从领域的算法(粒度搜索,时间旅行)。这使得提议者之间的合作是有益的,因为他们的能力在预期的研究方面完全互补。基本组成部分不限于特定的方法或特定的VRSP,而是广泛适用的。因此,预期的见解具有很强的相关性:它们允许针对大量实际和科学相关问题的许多不同解决方法的显着性能改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Stefan Irnich其他文献
Professor Dr. Stefan Irnich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Stefan Irnich', 18)}}的其他基金
OPUSS: OPtimization of Urban Synchromodal Systems
OPUSS:城市同步系统的优化
- 批准号:
391066679 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Dual Inequalities for Stabilized Column Generation (StabCG)
稳定柱生成的对偶不等式 (StabCG)
- 批准号:
280866737 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Synchronized Planning of Interdependent Resources in Transport Logistics
运输物流中相互依存资源的同步规划
- 批准号:
255380381 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
SynchroTrans: Multi-Dimensional Synchronisation of Heterogeneous Resources in Transport
SynchroTrans:传输中异构资源的多维同步
- 批准号:
178444147 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)