Strong Approximation Algorithms for the Steiner Tree Problem and Related Problems
Steiner树问题及相关问题的强逼近算法
基本信息
- 批准号:317997620
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We consider classical and practically relevant NP-hard problems in the area of topological network design. The probably best known such problem---besides the polynomial-time solvable spanning tree problem---is the Steiner tree problem: given a weighted graph, find a minimum-weight tree connecting a given set of terminal nodes. In practice, this and related problems arise in as diverse fields as, e.g., telecommunication networks, VLSI design, and geography.In previous studies, the theoretically strong approximation algorithms for the Steiner tree problem proved to be rather impractical due to their central concepts. The goal of this project is on the one hand to make these concepts more applicable in practice. On the other hand, we aim to develop new related but more directly applicable concepts that lead to similar quality guarantees.Apart from the classical Steiner tree problem, we also consider the problems of 2-connected network design, spanners, and directed Steiner trees, as well as practically relevant problems from geography/geoinformatic applications.
我们考虑了拓扑网络设计领域的经典和实际相关的np困难问题。除了多项式时间可解的生成树问题之外,最著名的问题可能是斯坦纳树问题:给定一个加权图,找到一个连接给定终端节点集的最小权值树。在实践中,这个和相关的问题出现在不同的领域,例如,电信网络,超大规模集成电路设计和地理。在以往的研究中,对于Steiner树问题,理论上强逼近算法由于其中心概念而被证明是相当不切实际的。这个项目的目标一方面是使这些概念在实践中更适用。另一方面,我们的目标是开发新的相关但更直接适用的概念,从而实现类似的质量保证。除了经典的斯坦纳树问题外,我们还考虑了2连通网络设计、扳手和有向斯坦纳树的问题,以及地理/地理信息学应用中的实际相关问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong Steiner Tree Approximations in Practice
实践中的强斯坦纳树近似
- DOI:10.1145/3299903
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:S. Beyer;M. Chimani
- 通讯作者:M. Chimani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Markus Chimani其他文献
Professor Dr. Markus Chimani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Markus Chimani', 18)}}的其他基金
Algorithmic Methods for Crossing Numbers and other Non-planarity Measures
交叉数和其他非平面性测量的算法方法
- 批准号:
285614448 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Approximationsalgorithmen für topologisches Netzwerkdesign in Theorie und Praxis
拓扑网络设计的近似算法的理论与实践
- 批准号:
202111644 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
- 批准号:
RGPIN-2019-05258 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for Restricted Invertibility and Experimental Design
受限可逆性的近似算法和实验设计
- 批准号:
576020-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Approximation algorithms and numerical experiments for covering vertices by long paths
长路径覆盖顶点的近似算法和数值实验
- 批准号:
573063-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
- 批准号:
RGPIN-2020-06423 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
- 批准号:
RGPIN-2020-04043 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms and Hardness of Approximation for Optimization Problems
优化问题的逼近算法和逼近难度
- 批准号:
RGPIN-2018-04677 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
- 批准号:
RGPAS-2020-00075 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
- 批准号:
RGPIN-2019-05258 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual