Spanner Problems and Multiple Objectives

扳手问题和多目标

基本信息

项目摘要

Given a graph $G$, probably together with edge lengths and weights. An $\alpha$-spanner is a subgraph of $G$ in which the shortest paths are at most $\alpha$ times longer than in $G$. Typically, one considers the problem of finding a small or cost-minimal spanner for a given $\alpha$. The spanner problem has diverse applications, there are many known research results, in particular in the realm of approximation algorithms, and spanner algorithms regularly appear as an intergal part of other algorithmic results. However, results regaring spanners are quite rare in three other research fields: (a) exact algorithms, (b) algorithm engineering (in particular practical implementations), and (c) multi-criteria variants of the problem (which seem rather typical in practice). In this project, we combine all these three fields in different ways: 1) We consider exact ILP-based methods to solve the classical minimum $\alpha$-spanner problem, both from the theoretical and polyhedral points of view, and regarding practical implementations. Thereby, we will have to solve a pricing problem within a column generation scheme which lends itself to the use of multi-criteria shortest path algorithms. 2) We consider different multi-criteria variants of the spanner problem (e.g., two different cost functions, minimize cost and $\alpha$, etc.). Instead of asking for a single optimal value, we now ask for a full Pareto front (or its extreme points). For such problems we will develop and implement both exact and approximative methods.
给定一个图G,可能还有边的长度和权。一个$\alpha$-图是$G$的一个子图,其中的最短路径至多是$G$的$\alpha$倍。通常情况下,我们考虑的问题是为给定的$\alpha$找到一个小的或成本最小的节点。该问题有着广泛的应用,有许多已知的研究成果,特别是在近似算法领域,并且该算法经常作为其他算法结果的一部分出现。然而,在其他三个研究领域中,关于spectrum的结果是相当罕见的:(a)精确算法,(B)算法工程(特别是实际实现),(c)问题的多标准变体(在实践中似乎相当典型)。在这个项目中,我们联合收割机以不同的方式结合所有这三个领域:1)我们考虑基于ILP的精确方法来解决经典的最小$\alpha$-最小问题,无论是从理论和多面体的角度来看,并考虑实际的实现。因此,我们将不得不解决一个列生成方案内的定价问题,该方案适用于使用多标准最短路径算法。2)我们考虑不同的多准则变量的问题(例如,两个不同的成本函数,最小化成本和$\alpha$等)。我们现在要求的不是一个单一的最优值,而是一个完整的帕累托前沿(或其极值点)。对于这样的问题,我们将开发和实施精确和近似的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Markus Chimani其他文献

Professor Dr. Markus Chimani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Markus Chimani', 18)}}的其他基金

Strong Approximation Algorithms for the Steiner Tree Problem and Related Problems
Steiner树问题及相关问题的强逼近算法
  • 批准号:
    317997620
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Algorithmic Methods for Crossing Numbers and other Non-planarity Measures
交叉数和其他非平面性测量的算法方法
  • 批准号:
    285614448
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Approximationsalgorithmen für topologisches Netzwerkdesign in Theorie und Praxis
拓扑网络设计的近似算法的理论与实践
  • 批准号:
    202111644
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Multiple independent NMR dimensions: smart experiments for complicated problems
多个独立的 NMR 维度:复杂问题的智能实验
  • 批准号:
    EP/X035476/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Towards Understanding and Handling Problems Due to Coexistence of Multiple IoT Platforms
合作研究:CNS核心:媒介:理解和处理多个物联网平台共存带来的问题
  • 批准号:
    2310322
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Towards Understanding and Handling Problems Due to Coexistence of Multiple IoT Platforms
合作研究:CNS核心:媒介:理解和处理多个物联网平台共存带来的问题
  • 批准号:
    2106978
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Towards Understanding and Handling Problems Due to Coexistence of Multiple IoT Platforms
合作研究:CNS核心:媒介:理解和处理多个物联网平台共存带来的问题
  • 批准号:
    2205868
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Towards Understanding and Handling Problems Due to Coexistence of Multiple IoT Platforms
合作研究:CNS核心:媒介:理解和处理多个物联网平台共存带来的问题
  • 批准号:
    2107093
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Acoustic Inverse Problems with Single and Multiple Measurements
单次和多次测量的声学反演问题
  • 批准号:
    2006881
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Maximum independent set and dominating set problems underlying multiple access communication codes
多址通信码的最大独立集和支配集问题
  • 批准号:
    20K03715
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了