Well-designed shape anisotropical bi-metallic nanoparticles for optical bioanalytics

用于光学生物分析的精心设计的形状各向异性双金属纳米粒子

基本信息

项目摘要

Addressing pressing problems of modern medicine, biotechnology and environmental science, such as mastering of new and multiresistant pathogens, personalized medicine, or the development of sustainable biotechnological processes requires a diagnostic at the single cell level. Therefore novel and powerful sensoric approaches are needed, which combine a selective recognition with a general applicable transducing principle and a high transduction rate, and which are also applicable for small molecular ensembles or even single molecules. Optical sensing based on nanoscale transducer (LSPR localized surface plasmon resonance) shows a high potential for a broad application in bioanalytics with significant advantages (like simpler detection, miniaturization, parallelization) compared to the established SPR (propagating surface plasmon resonance). In order to utilize this potential, the proposed project develops novel, more sensitive plasmonic nanoparticles based on a combination of two sensitivity boosting effects, namely anisotropy (using silver prisms) and bi-metal composition. Anisotropic particles show an enhancement of the electromagnetic field in certain locations (like corners) leading to a higher sensitivity for refractive index changes by analytes binding there. This effect will be, for the first time, combined with the recently observed sensitivity enhancement due to thin secondary metal layer on plasmonic nanostructures [1].In order to utilize the advantages of such particles fully, a narrow distribution in size (and thereby in the resulting spectroscopic properties) is required, what will be realized by the development of a microfluidic synthesis of the particles. Beside more homogenous chemical and thermal seed formation conditions in small liquid compartments, this process is strongly influenced by the self-assembly of primary metal clusters into growing particle during the seed phase of the synthesis. Beyond increased primary seed formation, this microfludic synthetic approach enables to influence cluster arrangement independently from seed formation, what will allow the formation of novel bi-metallic particles with significantly improved biosensoric properties. Using form-anisotrope plasmonic nanoparticles, the proposed project will demonstrate how micro reaction technology can be applied for a systematic assembly of novel functional nanomaterials.
解决现代医学、生物技术和环境科学的紧迫问题,如掌握新的和多重耐药病原体、个性化医疗或可持续生物技术过程的发展,需要在单细胞水平上进行诊断。因此,需要新的和强大的传感器方法,其将选择性识别与普遍适用的转导原理和高转导率相结合,并且其也适用于小分子集合或甚至单个分子。与现有的表面等离子体共振(传播表面等离子体共振)相比,基于纳米级传感器(LSPR局部表面等离子体共振)的光学传感在生物分析中具有广泛应用的巨大潜力,具有显着优势(例如更简单的检测、小型化、并行化)。为了利用这一潜力,拟议的项目开发了新的,更敏感的等离子纳米粒子的基础上的两个灵敏度提升效果,即各向异性(使用银棱镜)和双金属组合物的组合。各向异性颗粒在某些位置(如角落)显示出电磁场的增强,导致对结合在那里的分析物的折射率变化具有更高的灵敏度。这种效应将首次与最近观察到的由于等离子体纳米结构上的薄第二金属层而引起的灵敏度增强相结合[1]。为了充分利用这种颗粒的优点,需要窄的尺寸分布(从而在所得的光谱特性中),这将通过开发颗粒的微流体合成来实现。除了更均匀的化学和热晶种形成条件下,在小的液体隔室,这个过程是强烈影响的自组装的初级金属簇成生长的颗粒在种子阶段的合成。 除了增加的初级晶种形成之外,这种微流体合成方法能够独立于晶种形成影响簇排列,这将允许形成具有显著改善的生物传感特性的新型双金属颗粒。使用形式各向异性等离子体纳米粒子,拟议的项目将展示如何微反应技术可以应用于新的功能纳米材料的系统组装。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Wolfgang Fritzsche其他文献

Professor Dr. Wolfgang Fritzsche的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Wolfgang Fritzsche', 18)}}的其他基金

Tuning der optischen Eigenschaften von metallischen Core-shell-Nanopartikeln mit Mehrfach-Hüllen erzeugt durch Mehrstufen-Mikroreaktionstechnik
调节多级微反应技术产生的多壳金属核壳纳米颗粒的光学性质
  • 批准号:
    109076097
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Chipbasierte, elektrische DNA-Detektion mittels Nanopartikelmarkierung und Metallverstärkung
使用纳米颗粒标记和金属加固的基于芯片的电 DNA 检测
  • 批准号:
    5451045
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
DNA-DNA interactions in a planar-technical environment
平面技术环境中的 DNA-DNA 相互作用
  • 批准号:
    5211044
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
RII Track-4: NSF: Fabrication of Inversely Designed Nanophotonic Structures for Quantum Emitters
RII Track-4:NSF:用于量子发射器的逆向设计纳米光子结构的制造
  • 批准号:
    2327223
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
  • 批准号:
    2418277
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Landscapes of Designed Cold Unfolding Proteins
合作研究:设计的冷展开蛋白质的能量景观
  • 批准号:
    2319819
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RAPID: DRL AI: A Community-Inclusive AI Chatbot to Support Teachers in Developing Culturally Focused and Universally Designed STEM Activities
RAPID:DRL AI:社区包容性 AI 聊天机器人,支持教师开展以文化为中心且通用设计的 STEM 活动
  • 批准号:
    2334631
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328906
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328908
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329087
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SCC-CIVIC-FA Track B:Placekeeping: a Co-designed Model for Intergenerational Co-housing and Coalition Building in a University-Adjacent Community
SCC-CIVIC-FA 轨道 B:场所保留:大学相邻社区中代际共同住房和联盟建设的共同设计模型
  • 批准号:
    2322329
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Rheology of Polymer Melts with Designed Hairy Nanoparticles
设计毛状纳米粒子的聚合物熔体流变学
  • 批准号:
    2323413
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了