Towards generating and executing automatically simulation experiments

自动生成和执行模拟实验

基本信息

项目摘要

Simulation studies are becoming more and more an indispensable tool in many application areas. However, executing simulation studies requires not only in-depth knowledge about the system to be modeled and analyzed, but also detailed knowledge about the design of simulation experiments and the involved methods. The project "towards GeneRating and Executing Automatically Simulation Experiments - GrEASE" aims at supporting systematic discrete-event stochastic simulation studies by automatically generating and executing experiments. Simulation studies involve the iterative refinement of models and the successive execution of diverse experiments, e.g., sensitivity analysis or optimization, for which again different methods are available. To automatically generate and execute simulation experiments, we will focus on the following questions: what kinds of knowledge about simulation experiments, methods, goals, and about the current simulation study are needed, how can such knowledge be represented, used, and combined, and what role can schemas of simulation experiments, ontologies about methods, the conceptual model, as well as previously executed simulation experiments and provenance play in this endeavor? We will pursue two strategies to generate simulation experiments. Both rely on an effective combination of the above knowledge sources. However, their starting points and approaches vary. One strategy focuses on generating and executing a specific simulation experiment on the basis that experiments with similar goals have been executed before, or on the basis that certain experiments have been done with closely related models. Thus, provenance will form the starting point for this strategy. The second strategy aims to generate simulation experiments from scratch and will rely on inference rules to select an experiment type, appropriate methods, and to fill the respective experiment templates. Here, the conceptual model will be crucial as it provides context information about the simulation model. Several specific simulation studies will help evaluating the developed methods, strategies, and their combination.
仿真研究越来越成为许多应用领域不可缺少的工具。 然而,执行仿真研究不仅需要深入了解系统建模和分析,而且还需要详细了解仿真实验的设计和所涉及的方法。 该项目“走向GeneRating和执行自动模拟实验- GrEASE”旨在通过自动生成和执行实验来支持系统的离散事件随机模拟研究。模拟研究涉及模型的迭代改进和不同实验的连续执行,例如,灵敏度分析或优化,对此也有不同的方法可用。为了自动生成和执行模拟实验,我们将重点关注以下问题:需要关于仿真实验、方法、目标和当前仿真研究的哪些知识,这些知识如何被表示、使用和组合,以及仿真实验的模式、关于方法的本体、概念模型,以及先前执行的模拟实验和起源发挥在这奋进的努力?我们将采用两种策略来生成模拟实验。两者都依赖于上述知识来源的有效结合。然而,它们的出发点和方法各不相同。一种策略侧重于生成和执行特定的仿真实验,其基础是之前已经执行过具有类似目标的实验,或者基于已经使用密切相关的模型进行了某些实验。因此,出处将构成这一战略的起点。第二种策略旨在从头开始生成模拟实验,并将依赖于推理规则来选择实验类型,适当的方法,并填充相应的实验模板。在这里,概念模型将是至关重要的,因为它提供了有关仿真模型的上下文信息。几个具体的模拟研究将有助于评估开发的方法,策略,以及它们的组合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Adelinde Uhrmacher其他文献

Professorin Dr. Adelinde Uhrmacher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Adelinde Uhrmacher', 18)}}的其他基金

Modeling and simulation methods for linked lives in demography
人口学中关联生活的建模和模拟方法
  • 批准号:
    258560741
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Efficient Simulation of Cell-Biological Multi-Level Models (ESCeMMo)
细胞生物多级模型的高效模拟 (ESCeMMo)
  • 批准号:
    225222086
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Diskret-ereignisorientierte Mehrebenenmodellierung und Simulation für die Systembiologie
系统生物学的离散事件导向多级建模和仿真
  • 批准号:
    13798554
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ein komponentenbasiertes Framework zur Unterstützung einer effektiven und effizienten Simulation von Agentensystemen
一个基于组件的框架,支持有效且高效的代理系统模拟
  • 批准号:
    5399530
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
  • 批准号:
    24K02286
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: CAS: A light-based, energy-generating, carbon removal process
SBIR 第一阶段:CAS:基于光的能量产生碳去除过程
  • 批准号:
    2335596
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
  • 批准号:
    BB/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Generating green hydrogen from mining wastes
从采矿废物中产生绿色氢气
  • 批准号:
    IM240100202
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Mid-Career Industry Fellowships
3D Diffusion Models for Generating and Understanding 3D Scenes
用于生成和理解 3D 场景的 3D 扩散模型
  • 批准号:
    DP240101926
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Identification a novel bone-generating macrophage subset and their molecular mechanisms.
鉴定一种新型的骨生成巨噬细胞亚群及其分子机制。
  • 批准号:
    24K19848
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331583
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of a method for modifying peptides using cation-generating sulfoxides
开发使用产生阳离子的亚砜修饰肽的方法
  • 批准号:
    23H02609
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
  • 批准号:
    23K04201
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了