非平衡界面ゆらぎの大偏差計測に向けた重点サンプリング法の実験実装と実現
非平衡界面涨落大偏差测量聚焦采样法的实验实现与实现
基本信息
- 批准号:20H01826
- 负责人:
- 金额:$ 11.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2020
- 资助国家:日本
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kardar-Parisi-Zhang (KPZ) 普遍クラスの大偏差計測を目指し、本年度は主として以下の3項目について研究を推進した。(i) 完全非対称単純排他過程 (TASEP) におけるKPZ大偏差の初期条件依存性に関する研究 (ii) クローン法の実験実装手法改善 (iii) 液晶乱流の物性や液晶トポロジカル欠陥の動力学法則の研究。(i) TASEPにおけるKPZ大偏差の初期条件依存性に関する研究。前年度に引き続き、KPZクラスの代表的な可解模型であるTASEPを用いて、我々が提案するクローン法によってKPZ大偏差を計測した。前年度は、標準的な大偏差スケーリングを示す負の大偏差について本手法の有効性を主に確認したが、本年度は正の大偏差についても、特有のスケーリングを考慮に入れた解析によって計測可能であることを示した。本年度はさらに、これまで用いてきたステップ初期条件に加え、平面初期条件、定常初期条件についても計測を実施し、母関数の初期条件依存性についても示唆的な結果を得た。さらに、数値計算コードを最適化し、大幅な高速化に成功した。(ii) クローン法の実験実装手法改善。本手法の液晶実験系での実装では、取得した顕微鏡画像をリアルタイムで解析し、クローン生成に用いるデータを自動作成して、それを初期条件とする乱流界面をレーザーホログラフィ技術によって生成する、一連のステップを迅速に行うことが肝要である。本年度はこの迅速化の検討を進めた。(iii) 液晶乱流の物性や液晶トポロジカル欠陥の動力学法則の研究。本年度は、本研究が対象とする液晶乱流が負の粘性という異常物性を示すという最近の報告を受け、それと乱流界面成長の関係を調べるべく研究室既存のレオメーターの顕微鏡化に着手した。さらに、液晶乱流の構成要素であるトポロジカル欠陥の三次元運動の直接計測に成功し、その動力学法則について論文発表を行った。
Kardar-Parisi-Zhang (KPZ) has been widely used in the measurement of large deviations. This year, the following three projects have been promoted. (i)A Study on the Initial Condition Dependence of the Large Deviation of KPZ in the Completely Unsymmetrical Pure Exclusion Process (TASEP)(ii) Improvement of the Implementation Method of the Crucible Method (iii) Study on the Physical Properties of Liquid Crystal Turbulence and the Dynamic Law of Liquid Crystal Turbulence (i)A Study on the Initial Condition Dependence of TASEP for KPZ Large Deviation. In the past year, the representative of TASEP and KPZ can be used to measure the large deviation of KPZ. Previous year's large deviation from the standard indicates a negative large deviation from the standard. The effectiveness of this method is mainly confirmed. This year's large deviation from the standard indicates a specific large deviation from the standard. This year, the initial conditions of the measurement were increased, the initial conditions of the plane were increased, the initial conditions of the steady state were increased, and the initial conditions of the parent number were increased. Today, the number of calculations is optimized, and the speed is greatly increased. (ii)The implementation of the method to improve. The implementation of the liquid crystal implementation system of this method requires that the obtained micromirror images can be analyzed remotely, the data used in the generation of clicks can be automatically generated, and the turbulent interface can be generated based on the initial conditions and parameters using the real-time processing technology, which is essential for the rapid operation of a series of stadiums. This year's rapid change in the search for progress. (iii)Study on the kinetic law of liquid crystal turbulence. This year, we have studied the relationship between liquid crystal turbulence and negative viscosity and abnormal physical properties. Recent reports show that the relationship between liquid crystal turbulence and interface growth has been adjusted. We have started to study the existing liquid crystal turbulence and micro-mirror. In this paper, the direct measurement of three-dimensional motion of liquid crystal turbulence is successfully carried out.
项目成果
期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase-ordering kinetics in the Allen-Cahn (Model A) class: Universal aspects elucidated by electrically induced transition in liquid crystals
Allen-Cahn(模型 A)类中的相序动力学:液晶中电诱导转变阐明的普遍方面
- DOI:10.1103/physreve.104.054103
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Almeida Renan A. L.;Takeuchi Kazumasa A.
- 通讯作者:Takeuchi Kazumasa A.
Scale invariance of cell size fluctuations in starving bacteria
饥饿细菌细胞大小波动的尺度不变性
- DOI:10.1038/s42005-021-00739-5
- 发表时间:2021
- 期刊:
- 影响因子:5.5
- 作者:Shimaya Takuro;Okura Reiko;Wakamoto Yuichi;Takeuchi Kazumasa A.
- 通讯作者:Takeuchi Kazumasa A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
竹内 一将其他文献
KPZクラスにおける 1/f 的ゆらぎ
KPZ 等级的 1/f 波动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
清水 太朗;竹内 一将;Kazumasa A. Takeuchi;竹内一将 - 通讯作者:
竹内一将
Exploring Geometry Dependence of KPZ Interfaces
探索 KPZ 接口的几何依赖性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
清水 太朗;竹内 一将;Kazumasa A. Takeuchi;竹内一将;Kazumasa A. Takeuchi;Kazumasa A. Takeuchi;Kazumasa A. Takeuchi - 通讯作者:
Kazumasa A. Takeuchi
本邦で発見したB細胞欠損女児における新奇SLC39A7遺伝子変異とZIP7機能異常
日本发现 B 细胞缺陷女孩中新的 SLC39A7 基因突变和 ZIP7 功能异常
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
嶋屋 拓朗;竹内 一将;鈴木裕香;谷田けい - 通讯作者:
谷田けい
竹内 一将的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('竹内 一将', 18)}}的其他基金
3次元トポロジカル欠陥が織りなすpassive/active液晶の時空間ダイナミクス:開拓と制御
3D拓扑缺陷编织的被动/主动液晶的时空动力学:开发和控制
- 批准号:
24K00593 - 财政年份:2024
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Buckly-grains: a model system for elucidating interplay of extreme deformations and reconfigurations
Buckly-grains:用于阐明极端变形和重构相互作用的模型系统
- 批准号:
22KF0084 - 财政年份:2023
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
古典系・量子系におけるKardar-Parisi-Zhang普遍法則の統一的理解の構築
建立对经典和量子系统中卡达尔-帕里西-张普遍定律的统一理解
- 批准号:
23K17664 - 财政年份:2023
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
非平衡相転移の究明を目的とした、動的測定法によるDPユニバーサリティの実験的検証
使用动态测量方法研究非平衡相变实验验证 DP 普适性
- 批准号:
07J00335 - 财政年份:2007
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似海外基金
スケーリング則を持つ脊椎動物組織のパターン形成機構の数理モデル化と実験的検証
具有标度规律的脊椎动物组织模式形成机制的数学建模和实验验证
- 批准号:
24K02036 - 财政年份:2024
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
散逸率計測に基づく壁乱流におけるスケーリング則の確立
基于耗散因数测量建立壁面湍流标度律
- 批准号:
23K22675 - 财政年份:2024
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
カスプ磁場型磁気ノズルスラスタのスケーリング則確立
尖点磁场型磁力喷管推进器标度律的建立
- 批准号:
22KJ1232 - 财政年份:2023
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
閉じ込められた空間における液滴の動力学:スケーリング則と次元クロスオーバー
有限空间中的液滴动力学:尺度定律和维度交叉
- 批准号:
20J10242 - 财政年份:2020
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
レーザー核融合ロケットの磁気ノズルに関するスケーリング則確立と最適化
激光聚变火箭磁喷管标度律的建立与优化
- 批准号:
25420852 - 财政年份:2013
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
素粒子・核物理実験用ライトガイドの最適形状とスケーリング則の確立
粒子/核物理实验光导最佳形状和比例定律的建立
- 批准号:
23914005 - 财政年份:2011
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Encouragement of Scientists
地震の破壊成長過程についてのスケーリング則の構築
地震破裂扩展过程标度律的构建
- 批准号:
08J08078 - 财政年份:2008
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
近地地震波形を用いたアスペリティの分布とスケーリング則の研究
利用近场地震波形研究粗糙度分布和标度规律
- 批准号:
16740247 - 财政年份:2004
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
等方性乱流内素過程のスケーリング則と確率的構造
各向同性湍流基本过程的标度律和随机结构
- 批准号:
06231101 - 财政年份:1994
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
乱流理論による燃焼器スケーリング則の検討
利用湍流理论研究燃烧室结垢规律
- 批准号:
59550643 - 财政年份:1984
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)