High-Resolution Atmospheric Water Vapor Fields by Spaceborne Geodetic Sensing, Tomographic Fusion, and Atmospheric Modeling

通过星载大地测量传感、层析融合和大气建模实现高分辨率大气水汽场

基本信息

项目摘要

Although the atmosphere contains only up to 4% water vapor by volume, water vapor is one of the central atmospheric gases. Water vapor is a highly effective greenhouse gas that is directly intertwined with global climate change and its implications for natural disasters such as floods, droughts, deluge or glacier melting. As a vital component of the hydrological cycle, water vapor represents a main driver for the generation and spatio-temporal distribution of clouds and precipitation. The quantification of water vapor remains a challenge: while regional atmospheric models (Limited Area Model, LAM) in general allow to simulate the distribution of hydro-meteorological variables in space and time in high resolution, their performance in reproducing in detail their high spatio-temporal variability remains still limited. At the same time only limited high resolution atmospheric water vapor validation records exist. Acting as an important signal in meteorology and climate research, water vapor principally is regarded as a source of noise in Geodesy and Remote Sensing applications. The humidity of the Earth's atmosphere induces delays and distortions of high temporal and spatial fluctuations in microwave signals, which cannot be eliminated by multi-frequency measurements and have to be quantified during the data processing. Thus observations of Global Navigation Satellite Systems (GNSS: high temporal resolution) and Interferometric Synthetic Aperture Radar (InSAR: high spatial resolution) provide valuable contributions for reconstructing the integrated water vapor along the path from the satellites to the observation site on the Earth's surface. In addition, the sophisticated tomography-based evaluation of these data even allows generating 3D fields of the water vapor distribution in space and time. By using GNSS and InSAR based techniques in combination with high resolution regional atmospheric weather models and geostatistical data merging techniques, the proposed project aims at developing and evaluating new approaches to derive improved spatio-temporal estimates of the atmospheric water vapor distribution. In particular, tomography-based approaches in the evaluation of geodetic and remote sensing data will be further developed to improve the vertical and horizontal resolution of the atmospheric state variable under research. The generated products are used for comparison and assimilation with atmospheric model-based information to finally get an optimal estimation of the atmospheric water vapor distribution.
虽然大气中只有4%的水蒸气,但水蒸气是大气中的主要气体之一。水蒸气是一种高效的温室气体,与全球气候变化及其对洪水、干旱、洪水或冰川融化等自然灾害的影响直接相关。作为水文循环的重要组成部分,水汽是云和降水产生和时空分布的主要驱动力。水蒸气的量化仍然是一个挑战:虽然区域大气模型(有限区域模型,LAM)一般允许模拟水文气象变量在空间和时间上的高分辨率分布,其在详细再现其高时空变异性方面的性能仍然有限。同时,只有有限的高分辨率大气水汽验证记录存在。水汽作为气象学和气候学研究中的重要信号,在大地测量和遥感应用中主要被视为噪声源。地球大气层的湿度导致微波信号的时间和空间高度波动的延迟和失真,这是多频测量无法消除的,必须在数据处理过程中加以量化。因此,全球导航卫星系统(GNSS:高时间分辨率)和干涉合成孔径雷达(干涉合成孔径雷达:高空间分辨率)的观测为重建从卫星到地球表面观测点沿着的综合水汽提供了宝贵的贡献。此外,这些数据的复杂的基于断层扫描的评估甚至允许生成空间和时间上的水蒸气分布的3D场。通过使用全球导航卫星系统和基于干涉合成孔径雷达的技术,并结合高分辨率区域大气天气模型和地质统计数据合并技术,拟议项目旨在开发和评价新的方法,以改进对大气水汽分布的时空估计。特别是,将进一步发展基于层析成像的大地测量和遥感数据评价方法,以提高研究中的大气状态变量的垂直和水平分辨率。生成的产品用于与基于大气模型的信息进行比较和同化,最终获得大气水汽分布的最佳估计。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tropospheric delays derived from ground meteorological parameters: comparison between machine learning and empirical model approaches
从地面气象参数得出的对流层延迟:机器学习和经验模型方法之间的比较
  • DOI:
    10.23919/enc48637.2020.9317442
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miotti;Shehaj;Geiger;D'Aronco;Wegner;Moeller;Rothacher
  • 通讯作者:
    Rothacher
Assimilation of GNSS and Synoptic Data in a Convection Permitting Limited Area Model: Improvement of Simulated Tropospheric Water Vapor Content
  • DOI:
    10.3389/feart.2022.869504
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    A. Wagner;B. Fersch;P. Yuan;Thomas Rummler;H. Kunstmann
  • 通讯作者:
    A. Wagner;B. Fersch;P. Yuan;Thomas Rummler;H. Kunstmann
Feasibility of ERA5 integrated water vapor trends for climate change analysis in continental Europe: An evaluation with GPS (1994–2019) by considering statistical significance
ERA5综合水汽趋势用于欧洲大陆气候变化分析的可行性:考虑统计显着性的GPS评估(1994年至2019年)
  • DOI:
    10.1016/j.rse.2021.112416
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Hunegnaw;Alshawaf;Awange;Teferle;Kutterer
  • 通讯作者:
    Kutterer
Investigation of Important Aspects of GNSS/InSAR Techniques Integration for Atmospheric Water Vapor Retrieval
大气水汽反演 GNSS/InSAR 技术集成重要方面的研究
Total Refractivity Fields from GNSS Tropospheric Delays Reconstructed with Collocation Methods
用搭配方法重建 GNSS 对流层延迟的总折射率场
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Stefan Hinz其他文献

Professor Dr.-Ing. Stefan Hinz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Stefan Hinz', 18)}}的其他基金

Mobile image-based systems for on-site visualizations in the context of cooperative track-planning - trajectory determination of a multi-fisheye camera system in complex construction environments
基于移动图像的系统,用于协作轨道规划背景下的现场可视化 - 复杂施工环境中多鱼眼相机系统的轨迹确定
  • 批准号:
    190578467
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
3D-Rekonstruktion von Gebäuden in SAR-/InSAR-Daten mittels iterativen Analyse- und Syntheseverfahren basierend auf "Marked Point" Prozessen
使用基于“标记点”过程的迭代分析和合成方法对 SAR/InSAR 数据中的建筑物进行 3D 重建
  • 批准号:
    190378092
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Non-invasive geophysical and remote sensing methods to map and characterize relevant structures and processes
非侵入性地球物理和遥感方法来绘制和表征相关结构和过程
  • 批准号:
    200779391
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

Strateole-2: Atmospheric Wave Influences on Cirrus, Water Vapor, and Global Circulation Near the Tropical Tropopause
Strateole-2:大气波对热带对流层顶附近的卷云、水蒸气和全球环流的影响
  • 批准号:
    2231667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Continuous atmospheric water harvesting through gels
职业:通过凝胶连续收集大气水
  • 批准号:
    2239416
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Invented Multivariate MOF Material Enables Sustainable Atmospheric Water Generation for Rescue and Military Vehicles with Zero Carbon Emissions
发明的多元 MOF 材料可为救援和军用车辆提供可持续的大气水生成,实现零碳排放
  • 批准号:
    10072638
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
I-Corps: Sustainable Atmospheric Water Harvesting
I-Corps:可持续的大气集水
  • 批准号:
    2330013
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Testing Controls on Source, Sink, and Lifetime of Atmospheric Water with Numerical Tags and Stable Isotope Ratios
合作研究:利用数值标签和稳定同位素比率测试对大气水源、汇和寿命的控制
  • 批准号:
    2309269
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
U.S.-Ireland R&D Partnership: AQUASORB: Predictive Modeling of Atmospheric Water Sorption
美国-爱尔兰 R
  • 批准号:
    2154882
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Smart materials for atmospheric water management and water harvesting
用于大气水管理和集水的智能材料
  • 批准号:
    DP230100679
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Atmospheric impacts from the water-rich Hunga-Tonga large-magnitude eruption
富含水的洪加-汤加大规模喷发对大气的影响
  • 批准号:
    2889599
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Construction of model for the primordial atmospheric formatio with water production and theoretical prediction of water contents of terrestrial exoplanets
原始大气生成水模型的构建及类地系外行星含水量的理论预测
  • 批准号:
    22KJ0816
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigation of dynamics and physical chemistry of nanometals in atmospheric environments: Focusing on water solubility
大气环境中纳米金属的动力学和物理化学研究:关注水溶性
  • 批准号:
    22H03719
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了