Tensor Network Representation for Machine Learning: Theoretical Study and Algorithms Development
机器学习的张量网络表示:理论研究和算法开发
基本信息
- 批准号:20H04249
- 负责人:
- 金额:$ 11.23万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2020
- 资助国家:日本
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have developed several new tensor network decomposition and completion algorithms, and also developed the tensor network based neural network models and learning algorithms. These methods have been applied to several computer vision tasks.Specifically, we have developed tensorized RNN model that can achieve long term memory and reduced model size; we also studied Bayesian latent factor models to understand how tensor network is able to achieve model compression; our proposed tensor fusion layer can be applied to image denoting tasks with improvement performance, which can be also applied to the development of multimodal sentimental analysis. We also developed an efficient algorithm for classification on incomplete data samples, which has practical applications when the high-quality dataset is difficult to be obtained.From theoretical perspective, we have studied tensor nuclear norm and proposed several new definition of tensor norm, which has guarantee for exact recovery to tensor. In addition, we proposed a new type tensor network, called fully connected tensor network, which shows great flexibility on modeling complex interaction between tensor modes. The effectiveness of our theory and model is validated extensively on tensor completion tasks.
我们开发了几种新的张量网络分解和完备化算法,并开发了基于张量网络的神经网络模型和学习算法。这些方法已应用于多个计算机视觉任务。具体来说,我们开发了张量化RNN模型,可以实现长期记忆并减少模型大小;我们还研究了贝叶斯潜在因子模型,以了解张量网络如何实现模型压缩;我们提出的张量融合层可以应用于具有改进性能的图像表示任务,这也可以应用于多模态情感分析的开发。 从理论上研究了张量核范数,提出了几种新的张量范数定义,为张量的精确恢复提供了保证。 此外,我们还提出了一种新的张量网络,称为全连接张量网络,它在模拟张量模式之间的复杂相互作用方面表现出很大的灵活性。我们的理论和模型的有效性得到了广泛的验证张量完成任务。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TPFN: Applying Outer Product Along Time to Multimodal Sentiment Analysis Fusion on Incomplete Data
- DOI:10.1007/978-3-030-58586-0_26
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Binghua Li;Chao Li;Feng Duan;Ning Zheng;Qibin Zhao
- 通讯作者:Binghua Li;Chao Li;Feng Duan;Ning Zheng;Qibin Zhao
Tensor Recovery via L-Spectral k-Support Norm
通过 L 谱 k 支持范数恢复张量
- DOI:10.1109/jstsp.2021.3058763
- 发表时间:2021
- 期刊:
- 影响因子:7.5
- 作者:Andong Wang;Guoxu Zhou;Zhong Jin;Qibin Zhao
- 通讯作者:Qibin Zhao
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding
- DOI:10.1109/cvprw53098.2021.00296
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:C. Caiafa;Ziyao Wang;Jordi Solé-Casals;Qibin Zhao
- 通讯作者:C. Caiafa;Ziyao Wang;Jordi Solé-Casals;Qibin Zhao
Tensor Decomposition Via Core Tensor Networks
- DOI:10.1109/icassp39728.2021.9413637
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Jianfu Zhang;Zerui Tao;Liqing Zhang;Qibin Zhao
- 通讯作者:Jianfu Zhang;Zerui Tao;Liqing Zhang;Qibin Zhao
Hide Chopin in the Music: Efficient Information Steganography Via Random Shuffling
将肖邦隐藏在音乐中:通过随机洗牌实现高效信息隐写术
- DOI:10.1109/icassp39728.2021.9413357
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sun Zhun;Li Chao;Zhao Qibin
- 通讯作者:Zhao Qibin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ZHAO QIBIN其他文献
ZHAO QIBIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ZHAO QIBIN', 18)}}的其他基金
Multilinear Subspace Regression and Its Application in BCI.
多线性子空间回归及其在 BCI 中的应用。
- 批准号:
24700154 - 财政年份:2012
- 资助金额:
$ 11.23万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 11.23万 - 项目类别:
Standard Grant