A test of time dilation with an optical atomic clock on a stratospheric balloon
平流层气球上光学原子钟的时间膨胀测试
基本信息
- 批准号:323210209
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The performance of state-of-the-art optical lattice clocks offers an opportunity for an improved test of one of the fundamental effects of General Relativity, the time dilation in the gravitational potential. The most precise test of this effect was performed 40 years ago by comparing two microwave clocks on a 10 000 km height difference. A new, non-satellite test of this effect with a competitive precision necessarily implies the need to operate an optical clock outside of the laboratory. Here we propose to build a ytterbium optical lattice clock and to use it as a probe clock on significant altitudes to precisely measure the gravitational time dilation through a frequency comparison with a reference clock on the ground. We aim at a precision of the measurement better than that of the upcoming space mission ACES (2017-18), which employs a cold-atom Cs microwave clock. To achieve the goals of the project, we propose to develop a flyable optical clock (FOC), a particularly compact and robust apparatus, which additionally comprises, for the first time, two atomics subsystems, allowing for in-depth characterization and optimization of performance towards our specific experiment. In order to relax the requirement of accuracy for both the probe and the reference clock, in our application we foresee that during each experiment they are first compared on ground, before the FOC is brought to altitude and the comparison is repeated. Thus, the main requirement is the reproducibility of the FOCs and the references frequency. Furthermore, achieving high frequency stability is crucial in order to minimize the integration time during the measurement campaign, whose duration is limited. In a 7-year long project, we plan to perform experiments of increasing complexity, concerning both the vertical distance and the link between the two clocks. In a demonstration experiment (year 4), the FOC will be operated in the panoramic level of the television tower in Düsseldorf, 160 m above the reference clock on ground, which is connected through a fiber link and intercompared. This will provide a test of the gravitational time dilation at the 1E-3 level. In the final part of the project (years 7), a mission will be performed in which the FOC will be operated on a stratospheric balloon at an altitude of 35 km for approximately 10 hours. The frequency link for comparison with the reference clock on ground will be a frequency-comb-based two-way free-space laser link, to be implemented in collaboration with colleagues from NIST and ViaLight in years 4-6. By averaging down the statistical uncertainty of the frequency difference of the FOC and reference clock to the 2E-18 level, we aim for a measurement of the gravitational time dilation with relative uncertainty of 5E-7, approximately a factor of 4 better than the expected goal of the ACES mission.
最先进的光学晶格钟的性能为改进广义相对论的基本效应之一(引力势的时间膨胀)的测试提供了机会。 40 年前,通过比较高度差为 10,000 公里的两个微波钟,对这种效应进行了最精确的测试。以具有竞争力的精度对这种效应进行新的非卫星测试必然意味着需要在实验室外操作光学时钟。在这里,我们建议建造一个镱光学晶格钟,并将其用作重要高度上的探测钟,通过与地面参考钟的频率比较来精确测量重力时间膨胀。我们的目标是测量精度优于即将推出的太空任务 ACES (2017-18),该任务采用冷原子 Cs 微波时钟。为了实现该项目的目标,我们建议开发一种可飞行光学时钟(FOC),这是一种特别紧凑且坚固的设备,它还首次包含两个原子子系统,可以针对我们的具体实验进行深入的表征和性能优化。为了放宽对探头和参考时钟的精度要求,在我们的应用中,我们预计在每次实验期间,首先在地面上对它们进行比较,然后将 FOC 带到高空并重复进行比较。因此,主要要求是 FOC 和参考频率的再现性。此外,为了最大限度地减少持续时间有限的测量活动期间的积分时间,实现高频率稳定性至关重要。在一个为期 7 年的项目中,我们计划进行越来越复杂的实验,涉及垂直距离和两个时钟之间的链接。在演示实验(第 4 年)中,FOC 将在杜塞尔多夫电视塔的全景层运行,位于地面参考时钟上方 160 m,通过光纤链路连接并相互比较。这将提供 1E-3 级引力时间膨胀的测试。在该项目的最后部分(第 7 年),将执行一项任务,其中 FOC 将在高度 35 公里的平流层气球上运行约 10 小时。用于与地面参考时钟进行比较的频率链路将是基于频率梳的双向自由空间激光链路,将在第 4-6 年与 NIST 和 ViaLight 的同事合作实施。通过将 FOC 和参考时钟的频率差的统计不确定性平均降低到 2E-18 水平,我们的目标是测量相对不确定性为 5E-7 的引力时间膨胀,大约比 ACES 任务预期目标好 4 倍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Stephan Schiller, Ph.D.其他文献
Professor Stephan Schiller, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Stephan Schiller, Ph.D.', 18)}}的其他基金
Molecular frequency metrology: ultra-high precision spectroscopy of the rotational transition of HD+
分子频率计量:HD 旋转跃迁的超高精度光谱
- 批准号:
407129616 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Development of ultra-stable cryogenic silicon optical resonators for laser frequency stabilization
开发用于激光频率稳定的超稳定低温硅光学谐振器
- 批准号:
279028307 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Test of Quantum Electrodynamics and mass metrology by high-resolution laser spectroscopy in hydrogen molecules:the molecular ion HD+
氢分子中高分辨率激光光谱测试量子电动力学和质量计量:分子离子 HD
- 批准号:
233970312 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Test of Lorentz Invariance at the 1 x 10-18 level with optical resonators
使用光学谐振器测试 1 x 10-18 级别的洛伦兹不变性
- 批准号:
241133855 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Ultra-high laser frequency stabilization using spectral holes in a cryogenically cooled crystal as a frequency reference
使用低温冷却晶体中的光谱孔作为频率参考实现超高激光频率稳定
- 批准号:
215187986 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Development of tunable continuous-wave UV laser source of high spectral purity and demonstration of high-resolution spectroscopy
高光谱纯度可调谐连续波紫外激光源的开发及高分辨率光谱的演示
- 批准号:
161180076 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Spectroscopy of trapped ultracold complex molecular ions
捕获的超冷复合分子离子的光谱
- 批准号:
84231855 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Frequency metrology of the HD+ molecular ion: THz and vibrational spectroscopy at the 10-10 accuracy level
HD 分子离子的频率计量:精度为 10-10 级的太赫兹和振动光谱
- 批准号:
66475571 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
High-precision test of isotropy of light propagation using actively rotated optical resonators
使用主动旋转光学谐振器高精度测试光传播的各向同性
- 批准号:
19760781 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
- 批准号:
2338792 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
- 批准号:
2409327 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
- 批准号:
2305609 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
- 批准号:
2305325 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award