Development of ultra-stable cryogenic silicon optical resonators for laser frequency stabilization

开发用于激光频率稳定的超稳定低温硅光学谐振器

基本信息

项目摘要

Optical resonators with low sensitivity to temperature and mechanical forces are of great importance for precision measurements in the optical and microwave frequency domains. In the optical domain, they serve to stabilize the frequencies of lasers for spectroscopic applications, notably for optical atomic clocks, and for probing fundamental physics concepts such as the properties of space-time. Also, by conversion of ultra-stable optical frequencies to the radio-frequency domain via an optical frequency comb, radio-frequency sources with ultralow phase noise can be realized, applicable to, e.g., radar measurements with improved sensitivity. The conventional approach for ultra-stable optical resonators is the use of ULE (ultra-low expansion glass) material, operated at temperatures near room temperature. This necessarily leads to a level of Brownian length fluctuations which imposes a fundamental limit to the achievable frequency stability. Cryogenic operation of a resonator provides one avenue towards reduction of these Brownian fluctuations. This offers the possibility of reduction of laser frequency instability more than one order of magnitude lower than with ULE resonators. Crystalline cryogenic optical resonators are furthermore characterized by the near-absence of length drift thanks to the near-perfect lattice structure. Silicon optical resonators have recently been studied in two configurations: first, at 124 K, a silicon resonator has been used to stabilize a laser frequency to the fractional instability level of 1E-16 on short time scales. Second, in our own work, detailed characterizations of a silicon resonator at cryogenic temperature (1.5 K) were performed, which confirmed the potential of eventually leading to 1E-17 frequency instability. Based on these important proof-of-principle studies, we propose here to perform further developments on cryogenic silicon resonators at 1.5 K, with the goal of the first 2 years being to reach a frequency instability on the level of < 5E-17 for medium-long integration times 1E2 s - 1E4 s (with drift removal). This is an intermediate goal towards eventually reaching the 1E-17 level on both short and medium-long timescales, 1 s - 1E4 s To demonstrate the performance aimed for in our 2-year goal, a second cryogenic resonator system needs to be developed, since no reference having 5E-17 instability is available. It will be operated in the same cryostat as the first, existing resonator, and will allow intercomparisons via beat frequency measurements. Moreover, several key issues, previously identified, will be taken care of by implementing suitable subsystems: reduction or residual laser amplitude modulation, installation of an active vibration isolation to reduce cryostat vibrations, implementation of optical breadboards inside the cryostat, prestabilization of the laser to a room-temperature ULE resonator in order to achieve Hz-level linewidth.
对温度和机械力敏感度低的光学谐振腔对于光学和微波频域的精密测量具有重要意义。在光学领域,它们用于稳定光谱应用的激光频率,特别是光学原子钟,以及探测基本物理概念,如时空特性。此外,通过经由光频梳将超稳定的光频率转换到射频域,可以实现具有超低相位噪声的射频源,其适用于例如,提高雷达测量灵敏度。超稳定光学谐振器的常规方法是使用ULE(超低膨胀玻璃)材料,在接近室温的温度下操作。这必然导致布朗长度波动的水平,这对可实现的频率稳定性施加了基本限制。谐振器的低温操作提供了减少这些布朗波动的一种途径。这提供了比ULE谐振器低一个数量级以上的激光频率不稳定性降低的可能性。此外,由于近乎完美的晶格结构,晶体低温光学谐振器的特征在于几乎不存在长度漂移。硅光学谐振器最近已被研究在两种配置:首先,在124 K,硅谐振器已被用来稳定的激光频率的分数不稳定性水平的1E-16在短时间尺度上。其次,在我们自己的工作中,在低温(1.5 K)下对硅谐振器进行了详细的表征,这证实了最终导致1E-17频率不稳定的可能性。基于这些重要的原理验证研究,我们建议在1.5 K下对低温硅谐振器进行进一步开发,前两年的目标是在中长积分时间1E2 s-1E4 s(漂移消除)下达到<5E-17的频率不稳定性水平。这是一个中期目标,最终达到1E-17水平的短期和中长期的时间尺度,1 s-1E4 s为了证明我们的2年目标的性能,第二个低温谐振器系统需要开发,因为没有参考5E-17不稳定性。它将在与第一个现有谐振器相同的低温恒温器中运行,并将允许通过拍频测量进行相互比较。此外,几个关键的问题,以前确定的,将照顾到通过实施合适的子系统:减少或残留的激光振幅调制,安装一个主动隔振,以减少低温振动,实施低温内的光学试验板,预稳定的激光器到室温ULE谐振器,以实现Hz级的线宽。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulation of force-insensitive optical cavities in cubic spacers
  • DOI:
    10.1007/s00340-018-7000-3
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Wiens;S. Schiller
  • 通讯作者:
    E. Wiens;S. Schiller
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Stephan Schiller, Ph.D.其他文献

Professor Stephan Schiller, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Stephan Schiller, Ph.D.', 18)}}的其他基金

Molecular frequency metrology: ultra-high precision spectroscopy of the rotational transition of HD+
分子频率计量:HD 旋转跃迁的超高精度光谱
  • 批准号:
    407129616
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A test of time dilation with an optical atomic clock on a stratospheric balloon
平流层气球上光学原子钟的时间膨胀测试
  • 批准号:
    323210209
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Test of Quantum Electrodynamics and mass metrology by high-resolution laser spectroscopy in hydrogen molecules:the molecular ion HD+
氢分子中高分辨率激光光谱测试量子电动力学和质量计量:分子离子 HD
  • 批准号:
    233970312
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Test of Lorentz Invariance at the 1 x 10-18 level with optical resonators
使用光学谐振器测试 1 x 10-18 级别的洛伦兹不变性
  • 批准号:
    241133855
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultra-high laser frequency stabilization using spectral holes in a cryogenically cooled crystal as a frequency reference
使用低温冷却晶体中的光谱孔作为频率参考实现超高激光频率稳定
  • 批准号:
    215187986
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of tunable continuous-wave UV laser source of high spectral purity and demonstration of high-resolution spectroscopy
高光谱纯度可调谐连续波紫外激光源的开发及高分辨率光谱的演示
  • 批准号:
    161180076
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spectroscopy of trapped ultracold complex molecular ions
捕获的超冷复合分子离子的光谱
  • 批准号:
    84231855
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Frequency metrology of the HD+ molecular ion: THz and vibrational spectroscopy at the 10-10 accuracy level
HD 分子离子的频率计量:精度为 10-10 级的太赫兹和振动光谱
  • 批准号:
    66475571
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High-precision test of isotropy of light propagation using actively rotated optical resonators
使用主动旋转光学谐振器高精度测试光传播的各向同性
  • 批准号:
    19760781
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Laser spectroscopy of molecules
分子激光光谱
  • 批准号:
    14045219
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Michigan Compound Identification Development Cores (MCIDC)
密歇根化合物鉴定开发核心 (MCIDC)
  • 批准号:
    10012966
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Michigan Compound Identification Development Cores (MCIDC)
密歇根化合物鉴定开发核心 (MCIDC)
  • 批准号:
    10257642
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
DEVELOPMENT OF CONCENTRATED, STABLE ULTRA FAST-ACTING INSULIN FORMULATION
浓缩、稳定的超速效胰岛素制剂的开发
  • 批准号:
    10161661
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
DEVELOPMENT OF CONCENTRATED, STABLE ULTRA FAST-ACTING INSULIN FORMULATION
浓缩、稳定的超速效胰岛素制剂的开发
  • 批准号:
    10188522
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Michigan Compound Identification Development Cores (MCIDC)
密歇根化合物鉴定开发核心 (MCIDC)
  • 批准号:
    10183251
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Michigan Compound Identification Development Cores (MCIDC)
密歇根化合物鉴定开发核心 (MCIDC)
  • 批准号:
    9764380
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Development of ultra-wide bandgap amorphous oxide semiconductors for photo-stable electronic devices
用于光稳定电子器件的超宽带隙非晶氧化物半导体的开发
  • 批准号:
    17K14548
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of ultra-compact magnetic levitation artificial heart with highly efficient and stable magnetic levitation ability based on magnetic and mechanical characteristics
基于磁力学特性开发具有高效稳定磁悬浮能力的超小型磁悬浮人工心脏
  • 批准号:
    16K18044
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development and characterization of ultra-stable insulin analogs for novel therapeutic use
用于新型治疗用途的超稳定胰岛素类似物的开发和表征
  • 批准号:
    9259099
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Development of an all cryogenic ultra-stable microwave oscillator
全低温超稳微波振荡器的研制
  • 批准号:
    26246038
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了