Methods for selective scaling of strain and inertia for explicit dynamics with tetrahedral finite elements

四面体有限元显式动力学的应变和惯性选择性缩放方法

基本信息

项目摘要

Purpose of the proposed research project is the development of variational methods for selective scaling of inertia and strain for explicit dynamic finite element analysis to develop efficient and accurate tetrahedral finite elements for non-linear dynamics and wave propagation. For complex geometries, tetrahedral finite elements are often indispensable in finite element meshes. Existing tetrahedral finite elements are limited in their performance due to the following issues: Locking, high CPU cost, high numerical dispersion and large reflection-transmission errors in heterogeneous media. So far, the universal accurate high-performance tetrahedral does not exist. To reduce locking effects and CPU cost, which are important issues in non-linear structural dynamics, variational selective inertia and strain scaling is proposed. The basic hypothesis is that the application of strain scaling for tetrahedral elements prone to locking and the application of inertia scaling for computationally expensive elements like elements with Allmans rotations and composite finite elements enables the development of efficient and at the same time accurate elements. For wave propagation problems, an optimized dispersion behavior of higher-order tetrahedral elements may be obtained by inertia customization. Finally, the accuracy for simulation in heterogeneous media is improved by a reduction of the reflection-transmission-error.
拟议研究项目的目的是开发用于显式动态有限元分析的惯性和应变选择性缩放的变分方法,以开发用于非线性动力学和波传播的高效且准确的四面体有限元。对于复杂的几何形状,四面体有限元往往是不可缺少的有限元网格。现有的四面体有限元由于以下问题而在性能上受到限制:锁定、高CPU成本、高数值色散和在非均匀介质中的大反射-透射误差。到目前为止,还不存在普遍精确的高性能四面体。为了减少非线性结构动力学中的重要问题锁定效应和CPU成本,提出了变分选择惯性和应变缩放。基本的假设是,应变缩放的四面体元素的应用程序容易锁定和计算昂贵的元素,如元素与Allmans旋转和复合有限元的惯性缩放的应用程序,使开发高效,同时准确的元素。对于波传播问题,可以通过惯性定制来获得高阶四面体单元的优化色散行为。最后,通过减小反射透射误差,提高了非均匀介质中的模拟精度。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Customization of reciprocal mass matrices via log‐det heuristic
通过 logâdet 启发式定制倒数质量矩阵
Reciprocal mass matrices and a feasible time step estimator for finite elements with Allman's rotations
具有奥尔曼旋转的有限元的倒数质量矩阵和可行的时间步长估计器
TIME STEP ESTIMATES FOR RECIPROCAL MASS MATRICES USING OSTROWSKI'S BOUNDS
使用 OSTROWSKI 界对倒数质量矩阵进行时间步估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Anton Tkachuk其他文献

Professor Dr.-Ing. Anton Tkachuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Anton Tkachuk', 18)}}的其他基金

Heuristic dispersion design for discrete systems and acoustic metamaterials via matrix rank minimization
通过矩阵秩最小化的离散系统和声学超材料的启发式色散设计
  • 批准号:
    442679063
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

新型M4受体选择性拮抗剂的研究
  • 批准号:
    30973615
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
  • 批准号:
    2400056
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
  • 批准号:
    10590033
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Two Complementary Approaches to Site-Selective HAT and ET Reactions
位点选择性 HAT 和 ET 反应的两种互补方法
  • 批准号:
    2350270
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New biocatalysts for selective chemical oxidations under extreme conditions
用于极端条件下选择性化学氧化的新型生物催化剂
  • 批准号:
    DP240101500
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Super selective hydrogen permeation through mixed proton and electron conducting asymmetric graphene based membrane
通过混合质子和电子传导不对称石墨烯基膜的超选择性氢渗透
  • 批准号:
    24K17588
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Evaluating novel mutant-selective PDE4D PROTACs for the treatment of Acrodysostosis Type 2
评估新型突变选择性 PDE4D PROTAC 治疗 2 型肢节性骨质疏松症
  • 批准号:
    MR/Y003640/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ASL法を用いた門脈灌流画像の臨床応用及びsuper-selective MRAの有用性評価
ASL法门静脉灌注成像的临床应用及超选择性MRA的有效性评价
  • 批准号:
    24K18753
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了