B1: Modality in Physics and in Metaphysics

B1:物理学和形而上学的模态

基本信息

项目摘要

This project is based on the thesis that modality has a place in science, and in particular, in physics: Inductive inferences to modal conclusions do not exclusively appear in metaphysics, but are also part of the practices of physics. There are at least four types of modal inductive inferences within physics: From experimental outcomes it is inferred that theories of a certain kind cannot possibly be true (Type 1), whereas alternative theories with respect to a given standard theory are judged to be equally physically possible and their laws to be contingent (Type 2). Two further types of modal inferences concern the fundamentality or non-fundamentality of particular structures as following from their presence in all or only some models of a theory (Type 3), and as a result of theory unification (Type 4). From the perspective of Inductive Metaphysics, the basic premises of metaphysical inferences must be compatible with empirical facts and lower level theories, while their conclusions must not contradict conclusions established by inferences within physics. Two case studies shall provide examples of applied Inductive Metaphysics by means of reflecting the constraints imposed by modal inferences within physics. The first case study concerns the challenge by Weinberg's Spin 2-approach to Quantum Gravity to the ontological status of Riemannian space-time (cf. Type 4). The second case study aims at a theory of laws of nature respecting the minimal constraints for Inductive Metaphysics by affirming their contingency (cf. Type 2), but providing a better grip on causal necessitation than Armstrong's account of laws.
这个项目是基于这样一个论点,即模态在科学中占有一席之地,特别是在物理学中:模态结论的归纳推理并不仅仅出现在形而上学中,而且也是物理学实践的一部分。物理学中至少有四种类型的模态归纳推理:从实验结果推断出某一种理论不可能是真的(类型1),而相对于给定的标准理论的替代理论被判断为在物理上同样可能,其定律是偶然的(类型2)。另外两种类型的模态推理涉及特定结构的基本性或非基本性,因为它们存在于一个理论的全部或仅部分模型中(类型3),以及作为理论统一的结果(类型4)。从归纳形而上学的角度看,形而上学推论的基本前提必须与经验事实和低级理论相容,而推论的结论不能与物理学内部推论所建立的结论相矛盾。两个案例研究将提供应用归纳形而上学的例子,通过反映物理中模态推理所施加的限制。第一个案例研究涉及温伯格的自旋2-量子引力方法对黎曼时空的本体论地位的挑战(参见类型4)。第二个案例研究的目标是尊重归纳形而上学的最小约束的自然法则理论,通过肯定它们的偶然性(参见类型2),但比阿姆斯特朗对法则的描述更好地掌握了因果必然性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Andreas Bartels其他文献

Professor Dr. Andreas Bartels的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Andreas Bartels', 18)}}的其他基金

Zeit und Wirklichkeit in der speziellen Relativitätstheorie (und bei Kant)
狭义相对论(以及康德)中的时间和现实
  • 批准号:
    65636294
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Das Reduktionsproblem in der Physik - Chancen einer pluralistischen Ontologie
物理学中的还原问题——多元本体论的机会
  • 批准号:
    42758558
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
  • 批准号:
    23K02551
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MODSEM. Graded network activation and connectivity during semantic processing depending on modality
调制解调器。
  • 批准号:
    EP/Y014367/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
  • 批准号:
    10679530
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Modality-Agnostic Potency Assay Enabling Both Ex Vivo and In Vivo Genome Editing Therapeutics for Sickle Cell Disease
一种与模态无关的效力测定,可实现镰状细胞病的体外和体内基因组编辑治疗
  • 批准号:
    10668694
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
  • 批准号:
    2334246
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of multi-modality real-time tomographic imaging system using optical interference and photoacoustics
利用光学干涉和光声学的多模态实时断层成像系统的开发
  • 批准号:
    23K11823
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Offline to online and then back again: Assessing the ongoing impact of changes in classroom modality on student participation and experience in software engineering classes
线下到线上,然后再回来:评估课堂模式的变化对学生参与和软件工程课程体验的持续影响
  • 批准号:
    23K02808
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clinical Translation of dual-modality transrectal ultrasound and photoacoustic imaging for detection of aggressive human prostate cancer
双模态经直肠超声和光声成像检测侵袭性人类前列腺癌的临床转化
  • 批准号:
    10802712
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-scale and multi-modality imaging of neuropathology in VCID
VCID 神经病理学的多尺度、多模态成像
  • 批准号:
    10812034
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Conceptualization of mesenchymal stem cell-related diseases and elucidation of their etiology and treatment modality
间充质干细胞相关疾病的概念及其病因学和治疗方式的阐明
  • 批准号:
    23H03092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了