Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
基本信息
- 批准号:10679530
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAnatomyAreaAuditoryAwarenessBilateralBrainCellsCodeComplexCuesDevelopmentElectrophysiology (science)EnvironmentExposure toFaceFunctional Magnetic Resonance ImagingGenerationsHandHomologous GeneHumanImageImplantIndividualKnowledgeLateralLesionLocationMacacaMemoryModalityNeuronsPathway interactionsPerceptionPositioning AttributeProcessResearchResolutionRoboticsRoleSensoryShapesStimulusTactileTestingTouch sensationVisionVisualVisual AgnosiasVisual Pathwaysarmexperiencegrasphapticsinferotemporal cortexneuralneuromechanismneuroprosthesisnext generationnovelobject recognitionobject shaperecruitsensory inputvisual informationvisual processing
项目摘要
Project Summary
Accurate shape perception is crucial to identifying and manipulating objects in our environment. Among our
senses, vision and touch are unique in that they both convey geometric shape. Although haptic and visual
sensory inputs are initially processed along distinct sensory pathways, we experience an object’s shape as a
unified, modality-independent percept. How the brain generates modality-independent representations of
shape remains unknown. Human fMRI studies have identified the lateral occipital complex (LOC) as a key area
for visuo-haptic integration, yet the low spatial resolution of fMRI has failed to reveal the neural code used for
representing object shape. To address this knowledge gap, I propose to study the representations of haptic
and visual shapes in macaque inferotemporal cortex (IT), the homologue of human LOC. Specifically, I will test
the hypothesis that macaque IT creates modality-independent representations of haptic and visual shapes. To
this end, I will record the simultaneous activity of multiple neurons in IT while macaques are exposed to objects
presented as visual images or as 3D-printed haptic objects. First, I will identify if and how IT neurons represent
haptic shapes. Second, I will explore the neural basis of visuo-haptic shape representations in IT. By
elucidating the neural mechanisms by which IT generates modality-independent shape representations, this
research will shed light on how the brain is able to recognize shapes across sensory modalities. Furthermore,
the findings of this project will support the development of next-generation neuroprosthetic implants that can
leverage both haptic and visual sensory input.
项目摘要
准确的形状感知对于识别和操纵我们环境中的物体至关重要。在我们
感官、视觉和触觉的独特之处在于它们都传达几何形状。虽然触觉和视觉
感官输入最初是沿着沿着不同的感官路径处理的,我们将物体的形状体验为
统一的模态独立的概念大脑如何产生独立于模态的表征
形状仍然未知。人类的功能磁共振成像研究已经确定枕叶外侧复合体(lateral occipital complex,简称CAMPER)是一个关键区域,
对于视觉-触觉整合,然而fMRI的低空间分辨率未能揭示用于视觉-触觉整合的神经代码。
表示物体形状。为了解决这一知识差距,我建议研究触觉的表示
和视觉形状在猕猴下颞叶皮层(IT),人类的同源物。具体来说,我将测试
假设猕猴IT创建触觉和视觉形状的模态独立表示。到
为此,我将记录猕猴暴露于物体时IT中多个神经元的同时活动
呈现为视觉图像或3D打印的触觉对象。首先,我将确定IT神经元是否以及如何代表
触觉形状。第二,我将探索视觉触觉形状表征的神经基础。
阐明了IT生成独立于模态的形状表示的神经机制,
研究将揭示大脑如何能够识别各种感官形式的形状。此外,委员会认为,
该项目的发现将支持下一代神经假体植入物的开发,
利用触觉和视觉感官输入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Grayson Snider其他文献
William Grayson Snider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 4.77万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant














{{item.name}}会员




